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1. Combinatorics

1.1 Introduction to Combinatorics

1.1.1 What is Combinatorics?

Combinatorics is a field of mathematics related to existence, proving the existence or non-existence
of combinatorial objects; construction, describing how to create such objects; enumeration, comput-
ing the number of such objects; and optimization, determining which objects satisfy some extremal
property.

1.1.2 Combinatorial Game Theory

Definition 1.1.1 — Combinatorial game. A combinatorial game is a game that has the
following properties:

• Two players take turns
• There is no luck involved
• Both games have perfect information

Definition 1.1.2 — Winning strategy. Winning strategy is a strategy in a combinatorial game
that guarantees that one player will always win regardless of what the other player does.

For example, tic-tac-toe has no winning strategy because either side can force a draw. Checkers
is a mathematically solved game, that is, if each side plays perfectly, the game will end in a draw.
Connect Four is also mathematically solved, and the first player has a winning strategy.

1.1.3 The Game of Nim

Nim is a two player game. There are n piles of candies. On each turn, a player chooses a pile and
removes at least one candy from it. (They may remove any number of candies as long as they’re in
the same pile.) The player who takes the last candy wins (in normal Nim; there is a variant where
the last candy taker loses).
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Theorem 1.1.1 For a game of Nim with two piles of sizes m and n:
• If n = m, then player two can force a win.
• If n ̸= m, then player one can force a win.

Proof. The winning strategy is to balance the two piles so they are the same size. The player
who unbalances the piles can always be followed by a balancing move. In particular, taking
away the last candy is a balancing move. □

Theorem 1.1.2 For a game of Nim with three piles of sizes m, n and n, then player 1 can force a
win.

Proof. The player 1 can remove the pile of size m, then they become player 2 in two pile Nim
where the two piles are balanaced. Then by Theorem 1.1.1, that player wins □

We can convert the size of each pile into binary, then consider each digit place.

Definition 1.1.3 — Nim-sum. The Nim-sum is the sum of all piles in binary without carry.

You can also think of it as an exclusive or in each digit place.

■ Example 1.1 Consider the Nim-sum of 7⊕9⊕12⊕15

7 0111

9 1001

12 1100

15 1111

1101

We want to change the Nim-sum to 0, so we could remove 13. ■

Theorem 1.1.3 — Nim Theorem. The winning strategy in (normal) Nim is to finish every move
with a Nim-sum of zero

Proof. The winning strategy is to have a total even number of 1s in each binary digit place.
If the table is balanced, then the next move will unbalance it. You will always take away at

least one candy from one pile, so there will always be a 1 changing to a 0. So a balanced table
will always be unbalanced by the next move.

If the table is unbalanced, then you can always balance it with one move. Take the most
significant bit in the "Nim-sum" and pick a pile with a 1, then remove candies to balance. □
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1.1.4 Graph Theory
The Seven Bridges of Königsberg is a problem that asks if it is possible to cross all seven bridges
exactly once in a singular path.

Figure 1.1

Figure 1.2

It is impossible since every vertex has an odd number of edges coming out of it.
In graph theory, we only care about the structure of the graph, not the geometry, i.e., the

connections between nodes.

1.2 Proof Techniques and Problem Solving

1.2.1 Pigeonhole principle

Theorem 1.2.1 — Pigeonhole principle. If n pigeons are placed into m pigeonholes and n > m,
then there exists a pigeonhole with at least two pigeons.

Proof. Suppose n pigeons are placed into m pigeonholes such that n > m.
For contradiction, assume that every pigeonhole contains at most one pigeon.
Then there are at most m pigeons since there are m pigeonholes.
But we assumed that there are n pigeons and that n > m, so this is impossible.
Therefore, there must be a pigeonhole with more than one pigeon. □

The pigeonhole principle is not constructive (i.e., does not specify a pigeonhole). It allows us
to count objects with a common property.

An alternative statement of the pigeonhole principle is the following:
If f : X → Y is a function and |X |> |Y |, then there exists y ∈ Y and distinct x,x′ ∈ X such that

f (x) = f (x′) = y (i.e., f is not injective).

Theorem 1.2.2 — Generalized pigeonhole principle. Let m and k be positive integers. If
mk+1 pigeons are placed into m pigeonholes, then there exists a pigeonhole with at least k+1
pigeons.
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R mk+1 is a "sharp" (i.e., "tight") lower bound.

Definition 1.2.1 — Ceiling function. The ceiling function, denoted by ⌈x⌉ maps the x to the
least integer greater than or equal to x, ⌈x⌉= min{n ∈ Z : n ≥ x}.

It is straightforward to verify that x ≤ ⌈x⌉< x+1 holds for any x ∈ R.
The following is another version of the generalized pigeonhole principle:

Theorem 1.2.3 Let N and k be positive integers. If N objects are distributed to k boxes, then at
least one of the boxes must hold ⌈N/k⌉ objects.

R Make sure you know how to distribute the objects into the boxes, and not the boxes to the
objects.

Proof. Suppose N objects are distributed to k boxes.
For contradiction, assume that every box contains at most ⌈N/k⌉−1 objects.
Then there are at most k(⌈N/k⌉−1) objects since there are k boxes.
By using ⌈x⌉< x+1 with x = N/k, we have

# of objects ≤ k
(⌈

N
k

⌉
−1
)
< k
(

N
k
+1−1

)
= N

But we assumed that there are N objects, so this is impossible.
Therefore, there must be a box with ⌈N/k⌉ objects. □

We start with an introductory problem.

■ Example 1.2 At least 40 students at UTSC share the same birthday. ■

Proof. There are 14,547 students at UTSC. There are 366 possible birthdays (when including
the leap day).

By the pigeonhole principle, there is a birthday which is shared by ⌈14,547/366⌉ = 40
students. □

■ Example 1.3 Every subset of size 6 of the set {1,2,3,4,5,6,7,8,9} contains two elements
whose sum is 10. ■

The problem is finding the pigeons and pigeonholes.

Proof. Let A ⊆ {1,2, . . .9} with |A|= 6.
Consider the subsets Si of {1,9},{2,8},{3,7},{4,6},{5} as the pigeonholes. Then the

elements of A are pigeons.
Distribute the elements of A to Si according to their label. There are 6 pigeons and 5

pigeonholes.
By pigeonhole principle, there is a 2-element subset with 2 elements from A, hence, we have

sum 10 since all the 2-element subsets sum to 10. □

■ Example 1.4 Every subset of size n+1 of {1,2, . . . ,2n} has two elements that are consecutive.
■

Proof. Consider the subsets Si of {1,2},{3,4}, . . . ,{2n− 1,2n} as the pigeonholes. Let A ⊆
{1,2, . . .n} with |A|= n+1.

Distribute the elements of A to Si according to their label. There are n+ 1 pigeons and n
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pigeonholes.
By pigeonhole principle, there is a 2-element subset with 2 elements from A, hence, we have

two consecutive numbers in the subset. □

Exercise 1.1 What is the smallest N such that given any N positive integers, there are two
whose sum or difference is divisible by 100?

The answer is N = 52.
If N = 51, then we have {1,2, . . .50,100} which has no sum or difference divisible by 100.

Proof. Create 51 pigeonholes {00},{01,99},{02,98}, . . . ,{49,51},{50}.
Then consider the N positive integers as the pigeons. We distribute them into the pigeonholes

by considering them modulo 100.
By the pigeonhole principle, two of the 52 integers, say x and y, must belong to the same

set. Either x and y have the same last two digits and their difference ends in 00, or they have
different last two digits and their sum ends in 00. □

1.2.2 Problem Solving Tips
To solve a problem, some things we can do are:

• plug in numbers
• look for patterns
• draw pictures
• introduce notation
• think about “parity”
• look for symmetry
• divide into cases
• modify the problem (reduce or generalize)

1.2.3 Induction
To prove a family of statements P(k), we prove some base cases P(1), . . .. Then, we show that
P(1), . . . ,P(n)⇒ P(n+1).

Exercise 1.2 Prove ∑
n
i=1 i = n(n+1)

2 .

Proof. We prove this by induction.
BASE CASE: Let n = 1. Then ∑

n
i=1 i = 1 = 1(2)

2 = n(n+1)
2 .

INDUCTIVE HYPOTHESIS: Assume ∑
n
i=1 i = n(n+1)

2 for n ∈ N.
INDUCTIVE STEP: We want to show that ∑

n+1
i=1 i = (n+1)((n+1)+1)

2 .

n+1

∑
i=1

i =
n

∑
i=1

i+(n+1)

=
n(n+1)

2
+(n+1) (By IH)

=
n(n+1)+2(n+1)

2

=
(n+1)(n+2)

2

=
(n+1)((n+1)+1)

2
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∴ ∑
n+1
i=1 i = (n+1)((n+1)+1)

2 .
∴ By induction, ∑

n
i=1 i = n(n+1)

2 for n ∈ N □

Exercise 1.3 Prove chicken nuggets are sold in packages of sizes 4, 6, 9, and 20. Prove that for
n ≥ 24, we can buy exactly n nuggets by buying some combination of packages.

Proof. We prove this by induction.
BASE CASE: Let n = 24. Then n = 4+4+4+4+4+4.
Let n = 25. Then n = 4+4+4+4+9.
Let n = 26. Then n = 4+4+9+9.
Let n = 27. Then n = 9+9+9.
INDUCTIVE HYPOTHESIS: Assume we can buy exactly n nuggets for any 24 ≤ k ≤ n where

n ≥ 28.
INDUCTIVE STEP: We want to show we can buy exactly n+1 nuggets.
By IH, we can buy exactly k = (n+1)−4 nuggets since 24 ≤ (n+1)−4 ≤ n.
∴ We can buy n+1 nuggets because we can buy k = (n+1)−4 nuggets and a 4 pack. □

The largest number which cannot be expressed as a (non-negative) linear combination of a set
of given numbers is the Frobenius number.

1.2.4 Coloring/parity proof
The idea of coloring/parity proofs is to partition a set into a finite number of subsets by colouring
each element of the subset by the same colour.

In 1961, M.E. Fisher showed that an 8×8 chessboard can be covered by a 2×1 dominoes in
24 ×9012 = 12,988,816 ways.

Exercise 1.4 Cut out two opposite corners of a chessboard. How many ways can you cover the
62 squares using 31 dominoes?

There are 0 ways to cover the 62 squares using 31 dominoes.

Proof. Fact: Every domino must cover one black and one white tile.
Consider the "mutilated" chessboard, which is a chessboard with two opposite corners

removed.
These opposite corners have the same color.
WLOG assume the removed opposite squares are black. Then the mutilated chessboard has

30 black and 32 white squares.
To derive a contradiction, assume there exists a tiling.
By Fact, the dominoes must cover exactly 31 black and 31 white squares. Contradiction.
∴ There is no tiling of the 62 square mutilated chessboard by 2×1 dominoes. □

It doesn’t matter that we removed opposite corners.

Theorem 1.2.4 There is no tiling using dominoes of a chessboard where two squares of the
same color are removed.

The proof of this is the same as the last proof.
What if we remove two squares of different colors instead?

Theorem 1.2.5 [Gomory, 1973] An 8× 8 chessboard with one black and one white square
removed can always be covered by exactly 31 2×1 dominoes.

We create a cycle around the chessboard.
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Figure 1.3

Proof. By removing oppositely colored squares, the cycle in Figure 1.3 splits into two paths of
even length, i.e., they have an equal number of black and white squares. Then both paths can be
covered. □

1.2.5 Invariance principle
One of the proof techniques that we have is to look for things that don’t change.

Exercise 1.5 Divide a circle into six sectors and label the sectors by 1,0,1,0,0,0. Every minute,
you may increment two neighbors (sectors which share an edge) by 1. Is it possible to make all
numbers equal in finite time?

We divide the circle as in 1.4.

Figure 1.4

It is not possible to make all numbers equal.

Proof. Let the sectors of the circle be a1,a2,a3,a4,a5,a6
Let I = a1 +a3 +a5 −a2 −a4 −a6.
Claim: I is invariant (i.e., doesn’t change).

Proof. Each minute (or step) adds to {a1,a2},{a2,a3},{a3,a4},{a4,a5},{a5,a6},{a6,a1}.
So the value of I does not change. □

We want for i = 1, . . . ,6 that ai = m for some m ≥ 0. So I = m+m+m−m−m−m = 0.
Since we start with the state such that I = 2 and I is invariant (by Claim), then it is impossible

to reach the state with all numbers equal. □





2. Counting

2.1 Counting Principles
2.1.1 Addition and Multiplication Principle

Theorem 2.1.1 — Addition Principle. Suppose that for i = 1, . . . ,k, there are ni ways for event
Ei to occur.

If the ways the different events can occur are pairwise disjoint, the number of ways for at
least one of the events E1,E2, . . . ,Ek to occur is

k

∑
i=1

ni

This can be alternatively be formulated in the following way:
Let A1,A2, . . . ,Ak be any k finite sets. If Ai ∩A j ̸=∅ for all 1 ≤ i, j ≤ k with i ̸= j, then∣∣∣∣∣ k⋃

i=1

Ai

∣∣∣∣∣= k

∑
i=1

|Ai|

Theorem 2.1.2 — Multiplication Principle. Suppose that event E can be decomposed into k
ordered events such that for i = 1, . . . ,k, there are ni ways for event Ei to occur.

If the ways the different events are pairwise disjoint, the number of ways for E to occur is

k

∏
i=1

ni

This can be alternatively be formulated in the following way:
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Let A1,A2, . . . ,Ak be any k finite sets and

k

∏
i=1

Ai := {(a1,a2, . . . ,ak) | ai ∈ A1,a2 ∈ A2, . . .ak ∈ Ak }

be the Cartesian product of A1,A2, . . . ,Ak. Then |∏r
i=1 Ai|= ∏

r
i=1 |Ai|.

Intuitively, if we have n1 ways to do one thing and n2 ways to do something else, then there are
n1 +n2 to choose exactly one of the actions and n1 ·n2 ways to do both.

■ Example 2.1 To reach city D from A, we must pass through cities B and C, such that there
are 2 ways from A to B, 4 ways from B to C, 2 ways from C to D.

Then by multiplication principle, there are 2×4×2 = 16 ways to go from A to D. ■

Exercise 2.1 Find the number of positive divisors of the number 600 (including 1 and 600).

We use the fact that any positive divisor of n ∈ N is a product of prime divisors of n raised to
some power.

Solution. First, we get the prime factorization of 600 = 23 ·31 ·52.
Then any positive integer m is a divisor of 600 iff m is of the form 2a · 3b · 5c for 0 ≤ a ≤

3,0 ≤ b ≤ 1,0 ≤ c ≤ 2.
So the number of positive divisors of 600 is the number of triples (a,b,c) where a ∈

{0,1,2,3} and b ∈ {0,1} and c ∈ {0,1,2}, which by multiplication principle is 4×2×3. □

We can generalize to a function σ(n) to some product of the magnitude of the prime powers
plus 1.

Exercise 2.2 Let X = {1,2, . . . ,100} and S = {(a,b,c) | a,b,c ∈ X ,a < b,a < c}.
Find |S|.

Solution. We can split up into 100 disjoint cases by considering a = 1,2, . . . ,100.
Fix k such that 1 ≤ k ≤ 100.
Then we count (a,b,c) such that a < b,a < c.
So the number of choices for b is 100− k. Also, the number of choices for c is 100− k.
Then the number of triples of (k,b,c) is (100− k)× (100− k) by multiplication principle.

By addition principle, there are |S|= 992 +982 + · · ·+12 +02 =
99
∑

i=0
i2 = 99(99+1)(2(99)+1)

6 =

328,350. □

2.2 Permutations and factorial
Definition 2.2.1 — Permutation. A permutation is an arrangement of distinct objects.

Definition 2.2.2 — Factorial. The factorial of n objects is defined as

n! = n · (n−1) · · ·3 ·2 ·1

with the convention that 0! = 1.
Alternatively, we can say that n! = n(n−1)! with 1! = 1 and 0! = 1 for n ∈ Z≥0.
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Theorem 2.2.1 (i) There are n! permutations of a set of n objects.
(ii) Fix k so that 0 ≤ k < n. The number of permutations of k objects of a set of size n is

n · (n−1) · (n−2) · (n− k+1) =
n!

(n− k)!

As a proof outline, we have n choices for the first slot, n−1 choices for the second slot, so on,
until we have n− k+1 choices for the kth slot.

Notation 2.1. P(n,k) is the number of arrangements of k objects of a set of size n.

R We say that if k > n, then P(n,k) = 0.

2.3 Combinations
Definition 2.3.1 — Binomial coefficient. Let n ∈ Z≥0 and 0 ≤ k ≤ n.

The binomial coefficient is denoted
(n

k

)
.

Then
(n

k

)
is the number of ways to choose k objects from a collection of n objects.

Alternatively,
(n

k

)
is the number of k-element subsets of an n-element set.

Proposition 2.3.1 Let n ∈ Z≥0 and 0 ≤ k ≤ n. Then
(n

k

)
= n!

k!(n−k)! .

To show this, verify P(n,k) =
(n

k

)
k! using Multiplication Principle.

2.3.1 Problem Solving

Order significant Order not significant

Repetitions nk
(n+k+1

k

)
No repetitions n(n−1) · · ·(n− k+1)

(n
k

)
The following keywords indicate problems where order matters:
• arrangement
• row
• queue
• tuple
• list
• word
• PIN/password
• committee positions
The following keywords indicate problems where order doesn’t matter:
• pile
• set
• group
• committee
• bag
People are distinct since they have names.
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Exercise 2.3 There are seven professors and three students in a gathering. How many ways can
they be arranged in a row so that the three students form a single block.

Solution. First note that order matters, and that the ten people are distinct.
Since three students should sit together, we can treat them as a single entity.
So there are 8! ways of arranging the seven professors and the one group of three students.

Then there are 3! ways of arranging those three students. So we have 8! ·3!. possibilities. □

Exercise 2.4 There are seven professors and three students in a gathering. How many ways
can they be arranged in a row so that the end positions are occupied by professors and no two
students are adjacent.

Solution. First, consider the arrangements of professors.
There are 7! ways to arrange the 7 professors in a row.
Fix an arbitrary one of these arrangements.

P1P2P3P4P5P6P7

Then there are 6 spaces available for the students.

P1_P2_P3_P4_P5_P6_P7

We have
(6

3

)
places to place the students and 3! ways to arrange them. So 7! ·

(6
3

)
·3!. □

Exercise 2.5 Fix n ≥ 2.
(a) How many ways can we choose 2 people from among n people?
(b) How many ways can we partition n people into a set of size 2 and a set of size n−2?

Solution. (a) The answer is
(n

2

)
. The set of chosen people is a special set (the "chosen set").

That is, 2 people are chosen and n−2 are not chosen.
(b) The answer depends on n. For example, consider n = 4. Then {{1,2},{3,4}} =

{{3,4},{1,2}}, i.e., these two partitions are the same.
Thus, when n = 4, there are 1

2

(4
2

)
= 3 partitions.

When n ̸= 4, the answer is
(n

2

)
because the two partitions are different sizes.

□

The takeaway is that we have to be careful of overcounting in equal size sets in partitions.

2.4 Double Counting

There are two main methods to prove combinatorial formulas:
• Algebriac proof: Use

(n
k

)
= n!

k!(n−k)! .
• Combinatorial proof: Interpret

(n
k

)
as the number of ways of choosing a committee of k

people from n people.

■ Example 2.2 Let n be a positive integer and 0 ≤ k ≤ n. Prove
(n

k

)
=
( n

n−k

)
. ■

Determine a question that the identity answers. Answer the question in two different ways
("double counting"). Since both answers count the same thing, they must be equal.
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Proof. QUESTION: In how many ways can we select k toys from a box of n toys?
ANSWER 1: By definition of binomial coefficient

(n
k

)
.

ANSWER 2: We can pick k toys by choosing toys we don’t want. We choose n− k toys to
discard and keep the remaining. This can be done in

( n
n−k

)
□

■ Example 2.3 Let n ∈ Z+. Give a combinatorial proof of n2 = (n−1)2 +2(n−1)+1. ■

Proof. We consider the following problem:
PROBLEM: Count the number of ordered pairs (i, j) with 1 ≤ i, j ≤ n.
ANSWER 1: There are n choices for i and n choices for j. Thus, there are n2 possible ordered

pairs.
ANSWER 2: Note that + usually means to split into disjoint cases.
We partition the pairs according to the number of 1’s in it.
• When there are no 1s, there are (n−1)2 pairs.
• When there is one 1, there are 2(n−1) pairs, 2 choices for 1 and n−1 choices for the rest.
• When there are two 1s, there is only 1 pair.

□

■ Example 2.4 Let n be a positive integer. Give a combinatorial proof of

n

∑
k=0

(
n
k

)
= 2n

. ■

Proof. PROBLEM: A pretzel shop offers n toppings. How many pretzels can you make using
any number of the n toppings where each topping is used at most once?

ANSWER 1: For each of the n toppings, you have two choices, include or omit it. This gives
2n possible combinations.

ANSWER 2: Fix k such that 0 ≤ k ≤ n and consider a pretzel with exactly k toppings. Then
there are

(n
k

)
pretzels with exactly k toppings. So there are a total of ∑

n
k=0
(n

k

)
□

■ Example 2.5 Use combinatorial proofs to prove the following:
(a)

(m+n
2

)
=
(m

2

)
+
(n

2

)
+mn

(b) n2 =
n
∑

i=1
2n−1

(c)
n
∑

k=1
n
(n

k

)
= n2n−1

■

Proof. (a) PROBLEM: How many ways can you take 2 marbles out of m red marbles and n
blue marbles?
ANSWER 1: We know this is

(n+m
2

)
.

ANSWER 2: Choose 2 red,
(m

2

)
, 2 blue

(n
2

)
, or 1 red and 1 blue

(m
1

)(n
1

)
= mn.

(b) Consider ordered pair (i, j) where you consider k = max i, j.
(c) PROBLEM: Given n people, how many ways are there to select a committee of any size

from 1 to n with a president?
□
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2.5 Stars and Bars
Exercise 2.6 How many strings are there using four S’s and two B’s?

Proof. From 6 letters, choose 2 locations for B. This gives
(6

2

)
□

Exercise 2.7 How many ways can we distribute four dimes among three people?

Proof. There is a bijection between the distributions of dimes, and arrangements of 4 stars and
2 bars. So it suffices to count the number of ways to arrange 4 stars and 2 bars. This gives

(6
2

)
possibilities. □

Theorem 2.5.1 — Stars and bars. Let n ≥ 1 and m ≥ 1 be integers. The number of ways to
partition n identical objects into m labelled groups is

(n+m−1
m−1

)
, or equivalently,

(n+m+1
n

)
.

Proof. Set up a bijection with arrangements of stars and bars (where the stars are the objects
and the bars are the separators between the groups of objects).

Because we want m groups, we require m−1 bars for the partition:

group 1 | group 2 | · · · | group m

We now arrange the n stars and m−1 bars in a row. There are a total of n+m−1 symbols
to arrange. To count the number of arrangements, we choose the positions of the bars (or
equivalently, the stars) in the row.

∴ There are
(n+m−1

m−1

)
, or equivalently,

(n+m−1
n

)
arrangements. □

Observe that if we took all the partitions from Exercise 2.7, we get the equivalent: every
possible way to write the number four as an ordered sum of three non-negative integers.

That is, we’re enumerating the non-negative integer solutions to x1 + x2 + x3 = 4 where
x1,x2,x3 ≥ 0.

Theorem 2.5.2 Let n≥ 1 and m≥ 1 be integers. The number of ways to write n as an ordered sum
of n non-negative integers (i.e., the number of non-negative integer solutions to x1+x2+ · · ·+xm)
is
(n+m−1

m−1

)
, or equivalently,

(n+m+1
n

)
.

The proof is just a bijection through stars and bars.

Exercise 2.8 How many ways can we distribute four dimes among three people so that every
person gets at least one dime?

Proof. Note that we can’t have two adjacent bars or a bar in the end psitions.
First, we place all the bars, then allocate bars to the spaces between them.

∗_∗_∗_∗

Then observe that there are only 3 places to place the 2 bars, giving
(3

2

)
possibilities. □

Theorem 2.5.3 — Stars and bars, nonempty. Let n ≥ 1 and m ≥ 1 be integers. The number of
ways to partition n identical objects into m labelled nonempty groups is

(n−1
m−1

)
.

We can think of it as stars and bars but we give m objects first.
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Proof. Set up a bijection with arrangements of stars and bars (where the stars are the objects
and the bars are the separators between the groups of objects).

Because we want m groups, we require m−1 bars for the partition:

group 1 | group 2 | · · · | group m

We now arrange the n stars and m−1 bars in a row. To count the number of arrangements,
first place stars, then choose spots for bars between them (of which there are m−1).

∴ There are
(n−1

m−1

)
. □

We get a similar theorem to Theorem 2.5.2

Theorem 2.5.4 Let n ≥ 1 and m ≥ 1 be integers. The number of ways to write n as an ordered
sum of n positive integers (i.e., the number of positive integer solutions to x1 + x2 + · · ·+ xm) is(n−1

m−1

)
.

Exercise 2.9 (a) x1 + x2 + x3 + x4 = 7 with xi ≥ 0.
(b) x1 + x2 + x3 + x4 = 7 with xi > 0.
(c) x1 + x2 + x3 + x4 = 7 with 0 ≤ xi ≤ 9.
(d) x1 + x2 + x3 + x4 ≤ 7 with 0 ≤ xi ≤ 9.
(e) x1 + x2 + x3 + x4 ≤ 15 with xi ≥−10.
(f) x1 + x2 + x3 + x4 ≤ 13 with 0 ≤ xi ≤ 9.

Proof. (a) By stars and bars,
(7+4−1

4−1

)
=
(10

3

)
.

(b) By stars and bars,
(7−1

4−1

)
=
(6

3

)
.

(c) Equivalent to (a) because xi cannot be greater than 7.
(d) Note, this is equivalent to x1 + x2 + x3 + x4 ≤ 7 with xi ≥ 0.

Then, we add a slack variable to get an equivalent equation, x1 + x2 + x3 + x4 + x5 = 7
with xi ≥ 0.
By stars and bars,

(7+5−1
5−1

)
=
(11

4

)
.

(e) Substitute yi = xi + 10. Then we have y1 − 10+ y2 − 10+ y3 − 10+ y4 − 10 ≤ 15 with
yi ≥ 0.
We add a slack variable y5 to get the equality y1−10+y2−10+y3−10+y4−10y5 = 15
with yi ≥ 0.

□

2.6 Arrangements with Repetition
Say that we want the number of arrangments for letters MIKE. We could just say that there’s 4!
arrangements. But we can also consider that there are

(4
1

)
positions for M,

(3
1

)
for I,

(2
1

)
for K, and(1

1

)
. This lets us generalize to repetition.

■ Example 2.6 How many arrangements are there of the letters of TORONTO? ■

Proof. There are 7 letters. From 7 empty spots, choose 3 for O’s. Then, from 4 empty spot,
choose 2 for T’s. From 2 empty spots, choose 1 for R. From 1 empty spot, choose 1 for N.

The answer is(
7
3

)(
4
2

)(
2
1

)(
1
1

)
=

7!
3!4!

4!
2!2!

2!
1!1!

1!
1!1!

=
7!

3!2!1!1!

(Alternatively, there are 7! arrangements of letters, but we have to remove what we over-
counted, 7!

3!2! ) □
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■ Example 2.7 How many ways to arrange RRWWGGG?
How many ways to arrange a flag with 7 vertical stripes, 2 red, 2 white, and 3 green?
We have three types of breakfast food: raisin bran, waffles and grapefruit. If there are 2

bowls of raisin bran, 2 plates of waffles and 3 bowls of grapefruits available, in how many ways
can we distribute them among 7 people? ■

These questions are equivalent, giving 7!
2!2!3! . For the last question, fix the people in a row, then

the selection of breakfast foods is just an arrangement again.

Definition 2.6.1 — Multinomial coefficient. Let n be a positive integer and n1,n2, . . . ,nk be
non-negative integers such that

n1 +n1 + · · ·+nk = n

The multinomial coefficient is defined as(
n

n1,n2, . . . ,nk

)
:=

n!
n1!n2! · · ·nk!

Theorem 2.6.1 If there are ni ≥ 1 objects of type i for 1 ≤ i ≤ k, and there are n = n1+n2+ · · ·nk
objects in total, then the number of arrangements of these n objects is

( n
n1,n2,...,nk

)
.

We could switch the theorem to be the definition and the formula to be a theorem.

Proof. Generalize the process in the previous examples to get(
n
n1

)(
n−n1

n2

)(
n−n1 −n2

n3

)
· · ·
(

n−n1 −n2 −·· ·−nk−1

nk

)
arrangements and simplify to n!

n1!n2!···nk! which by definition is
( n

n1,n2,...,nk

)
. □

Note that multinomial coefficients generalize binomial coefficients:
(n

k

)
=
( n

k,n−k

)
.

Also, the multinomial coefficient is a natural number, by the previous theorem. (This is why
the combinatorial definition is preferred.)

■ Example 2.8 Let k be a positive integer. Prove that (4k)! is a multiple of 23k · · ·3k. ■

Proof. Count the number of arrangements of elements of the multiset

{a1,a2,a3,a4, a2,a2,a2,a2, . . . , ak,ak,ak,ak}

For i = 1,2, . . . ,k, each ai appears four times. The total number of elements including repears
is

n = n1 +n2 + · · ·+nk = 4+4+ · · ·+4 = 4k

By the theorem, the number of arrangements of elements in the multiset is(
n

n1,n2, . . . ,nk

)
=

(
4k

4,4, . . . ,4

)
=

(4k)!
4! ·4! · · ·4!

=
(4k)!
(4!)k =

(4k)!
()23 · · ·3)k =

(4k)!
23k · · ·3k

This is a natural number by previous observation. □
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■ Example 2.9 How many arrangements of FLIBBERTIGIBBET have no two vowels consecu-
tive? ■

Proof. There are 4 B’s, 2 T’s, 1 F, 1 G, 1 L, 1 R, and 2 E’s and 3 I’s.
First arrange the consonants. There are

( 10
4,2,1,1,1,1

)
= 10!

4!2! ways to do this.

Then there are 11 locations for the 5 vowels,
(11

5

)
. Then you have to arrange the vowels.

There are
( 5

2,3

)
ways to do this.

The final answer is
( 10

4,2,1,1,1,1

)(11
5

)( 5
2,3

)
. □

2.7 Binomial Theorem

Notation 2.2. For any k,n ∈ Z with n ≥ 0, we let
(n

k

)
= 0 for 0 ≤ k ≤ n.

We call
(n

k

)
a binomial coefficent because it shows up as a coefficient in the expansion of the

binomial expression (x+ y)n.

Theorem 2.7.1 For any integer n ≥ 0, we have

(x+ y)n =
n

∑
k=0

(
n
k

)
xn−kyk

One technique is to apply induction. We will use a combinatorial proof.

Proof. We want to show the coefficient of xn−kyk of (x+ y)n is
(n

k

)
.

To expand (x+ y)n = (x+ y)(x+ y) · · ·(x+ y)︸ ︷︷ ︸
n factors

, we choose either x or y from each factor of

(x+ y) and then multiply together.
To form a term with xn−kyk, we first select k of the n factors (x+ y) and pick y from these

chosen factors (followed by picking x from the remaining n− k factors).
The first step can be done in

(n
k

)
ways, and the second step in

(n−k
n−k

)
= 1 way.

∴ The number of ways to form an xn−kyk is
(n

k

)
. □

2.7.1 Multinomial Theorem
Consider a trinomial cubed, (x1+x2+x3)

3. How many ways are there to form a x2
1x2 term? We can

select x1,x1,x2 from the first, second, and third factors, or x1,x2,x1, or x1,x1,x2, giving three ways.
This is equal to the number of arrangements of x1,x1,x2 where n1 = 2, n2 = 1 and n = 3, i.e.,

( 3
2,1

)
.

Theorem 2.7.2 — Multinomial Theorem. Let n be a positive integer. For all x1,x2, . . . ,xm, we
have

(x1 + x2 + · · ·+ xm)
n = ∑

(
n

n1,n2, . . . ,nm

)
xn1

1 xn2
2 · · ·xnm

m

where the summation is over all the non-negative integer solutions (n1,n2, . . . ,nm) of n1 +n2 +
· · ·+nm = n.

We can rewrite this as ∑
n1+···+nm

( n
n1,...,nm

)
∏

m
i=1 xni

i

■ Example 2.10 Find the coefficient of x99y60z14 in (2x3 + y− z2)100 ■

Proof. Let x1 = 2x3,x2 = y,x3 =−z2. Then by the multinomial theorem, the terms are off the
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form (
100

n1,n2,n3

)
(2x3)n1yn2(−z2)n3 =

(
100

n1,n2,n3

)
(2x3)n1yn2(−1)n3(z2)n3

The term x99y60z14 arises when n1 = 33,n2 = 6,n3 = 7 which has coefficient(
100

33,60,7

)
233(−1)7 =−

(
100

33,60,7

)
233

□

■ Example 2.11 Prove using the binomial theorem:
()
(n

0

)
−
(n

1

)
+
(n

2

)
−·· ·+(−1)n

(n
n

)
() n2n−1 = ∑

n
k=1 k

(n
k

)
() 2n+1−1

n+1 = ∑
n
k=0

1
k+1

(n
k

)
■

Proof. (a) Consider (1+(−1))n. Then 1+(−1))n = 0 and also

(1+(−1))n =
n

∑
k=0

n
k

1n−k(−1)k

=

(
n
0

)
−
(

n
1

)
+

(
n
2

)
−·· ·+(−1)n

(
n
n

)
(b) Consider (1+ y)n.

(1+ y)n =
n

∑
k=0

n
k

1n−kyk

=
n

∑
k=0

n
k

yk

d
dy

(1+ y)n =
d
dy

n

∑
k=0

n
k

yk

n(1+ y)n−1 =
d
dy

n

∑
k=0

n
k

kyk−1

When we set y = 1, we get the result n2n−1 = ∑
n
k=1 k

(n
k

)
.

(c) Consider (x+1)n = ∑
n
k=0
(n

k

)
xk. We can take the definite integral from [0,1].

□

2.7.2 Pascal’s Triangle

Definition 2.7.1 — Pascal’s Triangle. Pascal’s Triangle is the triangular array so that the entry
in the nth row and kth column is

(n
k

)
, with top row as the 0th row.

Proposition 2.7.3 The sides of Pascal’s triangle are equal to 1, and all other entries are the sum
of the two entries above it.

We can write this mathematically as follows.
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Figure 2.1: Pascal’s Triangle with 7 rows

Theorem 2.7.4 For any n ≥ 2 and 1 ≤ k ≤ n−1, we have(
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
Proof. We consider the following problem for a combinatorial proof.

QUESTION: How many k element subsets S are there of {1,2, . . . ,n}?
ANSWER 1: There are

(n
k

)
subsets of {1, . . . ,n} of size k by definition of binomial coefficients.

ANSWER 2: We partition according whether 1 is in S.
The number of subsets of size k with 1 ∈ S is

(n−1
k−1

)
.

The number of subsets of size k with 1 ̸∈ S is
(n−1

k

)
. □

Proposition 2.7.5 (a) The entries are symmetric with respect to the middle line, i.e.,
(n

k

)
=( n

n−k

)
.

(b) The sum of each row is 2n, where n is the level number, i.e.,
(n

0

)
+
(n

1

)
+ · · ·+

(n
n

)
= 2n

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Figure 2.2: Hockey Stick Identity, 1+3+6+10 = 20

Theorem 2.7.6 — Hockey Stick Identity. For n,k ∈ N and n ≥ k, we have
(k

k

)
+
(k+1

k

)
+ · · ·+(n

k

)
=
(n+1

k+1

)
That is,

n

∑
i=k

(
i
k

)
=

(
n+1
k+1

)
The following is a corollary, hockey stick identity with k = 1.
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Proposition 2.7.7 The sum of the first n positive integers is

n

∑
i=1

i =
(

n+1
2

)
These are called the triangular numbers.

■ Example 2.12 — Shortest routes. How many shortest paths (along the integer grid) from
(0,0) to (m,n)? ■

(0,0)

Proof. You need to move right m times and up n times. This is equivalent to
(m+n

m

)
. □



3. Graph Theory

3.1 Graphs

Informally, a graph G is an object consisting of a collection V (or V (G)) of dots, called vertices,
and a collection E (or V (E)) of lines, called edges, where every edge connects two dots.

Vertices are often denoted by lowercase letters {a,b,c, . . . ,v1,v2,v3, . . .} and sometimes sub-
scripts, and edges are often denoted as {a,b} (or ab).

Definition 3.1.1 — Graph. A graph is a pair G = (V,E), where V is a non-empty set and E is a
set of two-element subsets of V .

A

B

C D

E

Figure 3.1: Labelled graph G1

The graph G1 in Figure 3.1 has V (G1) = {a,b,c,d,e} and E(G1) = {ab,bc,cd,de,ea,bd}.

Definition 3.1.2 — Simple graph. A simple graph is a graph without loops, multiple edges,
and directions.

R When we say graph, we mean a simple graph unless specified otherwise.
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A graph with loops (e.g., some edge {v1,v1}) or multiple edges is called a multiple graph. In a
directed graph, we call the lines arcs.

Definition 3.1.3 • Two vertices are adjacent or neighbors or connected if there exists an
edge containing those two vertices.

• An edge is incident to a vertex if it contains that vertex.

Consider Figure 3.1. Then a and b are adjacent because ab ∈ E, a and c are not adjacent
because ac ̸∈ E, and the edge ab is incident to vertices a and b.

3.1.1 Subgraph

Definition 3.1.4 — Subgraph. Let G = (V,E) and H = (V ′,E ′) be graphs.
Then H is a subgraph of G if V ′ ⊆V and E ′ ⊆ E.

A

B

C D

E

Figure 3.2: Subgraph G′
1 of labelled graph G1

A

B

C D

E

Figure 3.3: Non-subgraph G′′
1 of labelled graph G1

When looking at labelled graphs, we have to make sure the vertices and edges actually exist.
In an unlabelled graph, we have to show we can provide some labelling that makes the vertices

and edges a subset.

3.2 Paths, cycles, and complete graphs



3.2 Paths, cycles, and complete graphs 31

Definition 3.2.1 • A path is a graph Pn such that V (Pn) = {v1,v2, . . . ,vn} and E(Pn) =
{vivi+1 | 1 ≤ i ≤ n−1}.

• A cycle is a graph Cn such that V (Cn)= {v1,v2, . . . ,vn} and E(Cn)= {vivi+1 | 1 ≤ i ≤ n−1}∪
{v1vn}.

• A complete graph is a graph Kn such that V (Kn)= {v1,v2, . . . ,vn} and E(Kn)=
{

viv j | 1 ≤ i ̸= j ≤ n
}

.

We will consider paths with n ≥ 2, cycles with n ≥ 3, and complete graphs with n ≥ 2.

3.2.1 Connected graphs

Definition 3.2.2 — Connected graph. A graph is connected if there is a path between every
pair of vertices.

A graph that is not connected is a disconnected graph

Definition 3.2.3 — Component. Let G be a graph. A maximal connected subgraph of G is
called a component of G.

3.2.2 Degree

Definition 3.2.4 Let G = (V,E) be a graph.
• The degree of a vertex v, denoted by deg(v) (or dv or d(v)) is the number of edges incident

to v.
• A vertex of degree zero is called an isolated vertex.
• The minimum degree in G is denoted by δ (G)
• The maximum degree in G is denoted by ∆(G)
• The degree sequence of G is a list of the degrees of each vertex in V (usually in non-

increasing or non-decreasing order).

■ Example 3.1 Consider the graph G1 in Figure 3.1.
Then deg(a) = deg(c) = deg(e) = 2 and deg(b) = deg(d) = 3. So δ (G) = 2 and ∆(G) = 3,

and G has degree sequence (2,2,2,3,3). ■

Exercise 3.1 (i) Find lower/upper bounds on degree and number of edges.
(ii) Find a graph whose vertices all have different degree.

(iii) Find a relationship between |E(G)| and degrees.

Theorem 3.2.1 For every graph G on n vertices with m edges, we have 0 ≤ m ≤
(n

2

)
.

Proof. Since m ∈ Z≥0, there are a maximum of
(n

2

)
two-element subsets of an n-set. □

Theorem 3.2.2 For every vertex v in a graph G on n vertices, we have 0 ≤ deg(v)≤ n−1.

Proof. Each vertex can be adjacent to at most n−1 other vertices. □

The following result motivates a theorem on the degree of vertices.

Exercise 3.2 Is there a graph with degree sequence (0,1,2,3,4)?

There isn’t a graph with such a degree sequence because we can’t have both degree 0 and n−1
in a graph with n vertices.
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Theorem 3.2.3 For n ≥ 2, any graph on n vertices has at least two vertices of the same degree.

Proof. First we prove the following claim.
CLAIM: A graph can’t have both 0 and n−1 in its degree sequence.

Proof. Assume there is a vertex of degree 0 and another vertex of degree n−1.
Since there is a vertex of degree 0, the graph is disconnected.
Since there is a vertex of degree n−1, the graph is connected.
Contradiction. □

So every vertex degree is in the set {0,1,2 . . . ,n−2} or {1,2 . . . ,n−1}. Both sets have size
n−1.

∴ By pigeonhole principle, there must be two vertices of the same degree. □

3.3 Isomorphic Graphs

For graphs, the geometry does not matter; only the connections matter.

Definition 3.3.1 Let G,H be graphs. G and H are isomorphic, G ∼= H, if there is a bijection
σ : V (G)→V (H) such that uv ∈ E(G) if and only if σ(u)σ(v) ∈ E(H). That is, the bijection
preserves adjacency and non-adjacency. We call σ an isomorphism.

■ Example 3.2 The graphs C3 and K3 are isomorphic, while the graphs C3 and P3 are not
isomorphic. ■

Figure 3.4: Isomorphic Graphs

Let G be the graph on the left and H the graph on the right. To show that G ∼= H, we provide an
isomorphism σ .

To prove two graphs are not isomorphic, we can show they differ in some structural property.
Some (necessary, but not sufficient) properties we can check are:
• Number of vertices
• Number of edges
• Number of components (i.e., connected, disconnected)
• Degree sequence
• Minimum degree
• Maximum degree
• Cycle structure (e.g., number of 3-cycles)
• Planar
• Bipartite
• Eigenvalues of adjacency matrices
• Chromatic number
We can also check this list for the complement of the graph.



3.4 Graph complement 33

Figure 3.5: Non-isomorphic graphs of 4 vertices

3.4 Graph complement

Definition 3.4.1 — Complement. Let G be a graph. The complement of G, G, has vertex set
V (G) =V (G) and edge set

E(G) = {xy | xy ̸∈ E(G)}

That is, we flip the edges and non-edges to draw the complement.

Theorem 3.4.1 Let G be a graph. Then E(G)+E(G) =
(n

2

)
This is because we get all 2-element subsets of V .

Theorem 3.4.2 Let G and H be graphs. Then G ∼= H iff G ∼= H.

We use the fact that if σ is an isomorphism for G and H, then we can use the same isomorphism
for the complement, since it’ll map non-edges to non-edges.

Exercise 3.3 How many (non-isomorphic) graphs are there on 4 vertices?

Exercise 3.4 How many edges does Pn have?
How many edges does Cn have?
How many edges does Kn have?

Proof. We have that |E(Pn) = n−1, |E(Cn)|= n, and |E(Kn)|=
(n

2

)
. □

3.5 Graph degree results

Theorem 3.5.1 — Handshaking Lemma. Let G be a graph. Then

∑
v∈V (G)

deg(v) = 2 |E(G)| .

Proof. We use a double counting argument (as Euler did).
PROBLEM: Count the ordered pairs (v,e),v ∈V (G),e ∈ E(G) where e is incident to v.
SOLUTION 1: Fix v. For each v, there are deg(v) such pairs.
Summing over v gives ∑v∈V (G) deg(v) pairs.
SOLUTION 2: Fix e. For each e, there are 2 such pairs, one for each vertex incident to e.
Summing over e gives ∑e∈E(G) 2 = 2 |E(G)|.
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Since both ways count the same number of pairs, they must be equal,

∑
v∈V (G)

deg(v) = 2 |E(G)| .

□

Corollary 3.5.2 A graph has an even number of vertices of odd degree.

Proof. Assume a graph has an odd number of vertices of odd degree. Then the total degree of
the graph is odd, i.e, ∑v∈V (G) deg(v) = 2k+1 for some k ∈ N.

Then by handshaking lemma, the number of edges in G is ∑v∈V (G) deg(v)
2 = 2k+1

2 = k+0.5 ̸∈ N.
Contradiction. □

Exercise 3.5 Let G be a graph with 31 edges and every vertex having degree at least 4. That is,
|E(G)|= 31 and δ (G)≥ 4.

(a) What is the maximum number of vertices that G can have?
(b) What is the minimum number of vertices that G can have?

Proof. (a) We have by handshaking lemma ∑v∈V (G) deg(v) = 2 |E(G)| = 62. So
∑v∈V (G) deg(v)≥ ∑v∈V (G) = 4 |V (G)|. Then |V (G)| ≤ 15.
We have to show that this is the maximum. Consider 3K5 with one more edge. This shows
15 is possible.

(b) By Lemma 3.2.1, 31 ≤
(n

2

)
, so 9 is a lower bound (allowing 36 possible edges).

Consider the complement of P6 in K9, i.e., take the complete graph on 9 edges, then delete
a path of 6 vertices. This gives 31 edges.

□

Theorem 3.5.3 Let G be a graph such that δ (G)≥ 2. Then G contains a cycle.

G containing a cycle means there is a subgraph of G that is isomorphic to some Cn.
The following proof demonstrates the extremal principle, i.e., pick an object which is maxi-

mum/minimum among a specific class of structures; deduce there is an even larger/smaller object;
give a contradiction.

Proof. Let P = v1v2 · · ·vk be a longest path.
Consider v1. Since deg(v1)≥ 2, v1 is adjacent to another vertex w such that w ̸= v1,v2.
CASE 1: Suppose w ̸∈V (P).
But then wv1v2 · · ·vk is a path longer than P. Contradiction.
CASE 2: Suppose w ∈V (P).
Then w = vi for some i ̸= 1,2. This gives a cycle C = v1v2 · · ·viv1 in G. □

3.6 Bipartite Graphs

Definition 3.6.1 — Bipartite graph. A bipartite graph is a graph whose vertex set can be
partitioned into two disjoint sets V1,V2 such that every edge has one endpoint in V1 and the other
endpoint in V2.

Recall that a partition of a set V is a set of non-empty subsets of V such that every element
v ∈V is in exactly one of these subsets. Therefore, V (G) =V1 ∪V2 and V1 ∩V2 =∅.
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Definition 3.6.2 — Complete bipartite graph. A complete bipartite graph is a bipartite graph
where every vertex of the first set V1 is connected to every vertex of the second set V2.

We use the notation Km,n where m = |V1| and n = |V2|.

■ Example 3.3 Which of the paths, cycles, and complete graphs are bipartite?
• For n ≥ 2, Pn is bipartite.
• For n ≥ 3, Cn is bipartite if and only if n is even.
• For n ≥ 3, Kn is not bipartite.
Note that P2, P3, and C4 are complete bipartite (they are K1,1, K1,2, and K2,2 respectively). ■

Theorem 3.6.1 If a graph G is bipartite, then any subgraph H of G is bipartite.

Proof. Let G = (V,E) be bipartite with vertex partition V = X ∪Y .
Let H = (V ′,E ′) be a subgraph of G.
Choose X ′ = X ∩V ′ and Y ′ = Y ∩V ′. Then V ′ = X ′ ∪Y ′ is a bipartition of H (otherwise,

there is an edge of H with both endpoints in X ′ or Y ′ and thus this is also an edge of G with both
endpoints in X or Y , which would contradict that X ∪Y is a biparition of G). □

Theorem 3.6.2 If G = (V,E) is a bipartite graph with bipartition (X ,Y ) (i.e., V = X ∪Y ), then

|E(G)|= ∑x ∈ X deg(x) = ∑y ∈ Y deg(y)

The statement follows from the fact that every edge has exactly one endpoint in X and exactly
one endpoint in Y .

Theorem 3.6.3 A graph G is bipartite if and only if G does not contain an odd cycle.

Proof. Let G be a bipartite graph. Then V (G) = X ∪Y with X ∩Y =∅ and every edge has one
endpoint in X .

For contradiction, suppose G has an odd cycle.
WLOG, suppose v1 ∈ X .
Then v2 ∈Y since v1v2 is an edge so has one endpoint in X and one endpoint in Y . So v3 ∈ X ,

v4 ∈ Y , v5 ∈ X , . . .
That is,

vi ∈

{
X , if i is odd
Y, if i is even

Then vk ∈ X since k is odd. But vkvi is an edge with v1,vk ∈ X . Contradiction.
∴ G has no odd cycles.
Let G be a graph with no odd cycles (i.e., all cycles in G have even length).
Suppose G is connected. (If G is disconnected, we apply the following partition to each

component.)
Fix a vertex v ∈V (G).
Define the distance between v and u, dist(v,u), to be the number of edges in a shortest parth

connecting them.
Then choose X = {x | dist(v,x) is even} and Y = {y | dist(v,y) is odd}.
Since G is connected, X ∪Y =V (G) since dist(v,u) is either even or odd. Also, X ∩Y =∅.
Now we need to show all edges of G have one endpoint in X and the other endpoint in Y .
For contradiction, suppose x1x2 ∈ E(G) with x1,x2 ∈ X . (We get an identical argument for

y1,y2 ∈ Y .)
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Let P be a shortest path from v to x1, and let Q be a shortest path from v to x2.
Then the length of P and Q have the same parity since dist(v,x1) and dist(v,x2) are even by

the construction of X .
Let w be the last common vertex of P and Q (i.e., the path from w to x1 and the path from w

to x2 have no common edges).
Let P1 be the part of P from v to w, P2 be the part of P from w to x1, Q1 be the part of Q from

v to w, and Q2 be part of Q from w to x2.
Then P1 and Q1 have the same length (otherwise, say P1 shorter than Q1, then the path P1Q2

is shorter than Q from v to x2, contradicting Q shortest.)
So P2,Q2 have the same parity (since P,Q have the same parity). So then the cycle from w to

x1 (by P2) to x2 (by supposition) to w (by Q2) is an odd cycle. Contradiction.
∴ G is bipartite. □

3.7 Planar Graphs

■ Example 3.4 The three utilities puzzle asks the following:
Three houses each need to be connected to gas, water and electric companies. Without using

a third dimension or sending any connections through another house or company, is there a way
to make all nine connections without crossings?

In graph theoretical terms:
Can the graph K3,3 be drawn in the plane without any pair of edges crossing? ■

Definition 3.7.1 — Planar graph. A graph G is planar if it can be drawn in the plane so that no
two edges intersect (except possibly at their edgepoints). Such a graph is called a plane graph
or a planar embedding of G.

■ Example 3.5 K4 is planar. K2,3 is planar. In fact, K2,n for any n ∈ N is planar. ■

Is K5 or K3,3 planar?

3.7.1 Faces
Definition 3.7.2 — Face. A plane graph G divides the plane into regions called faces, F(G).
Every plane graph has an unbounded region called the exterior face.

It is possible to have two different plane graphs which are isomorphic as graphs (where different
means some face has a different number of boundary edges).

Is there a planar embedding of a graph G with a different number of faces?

Theorem 3.7.1 — Euler’s formula. Let G be a connected plane graph such that v = |V (G)|,
e = |E(G)|, f = |F(G)|. Then v− e+ f = 2.

In general, v− e+ f = 1+number of components.
Proof. Let G be a connected plane graph such that v = |V (G)|, e = |E(G)|, f = number of faces
of G.

We do induction on e.
BASE CASE: Let e = 0. Then G = K1. (G is disconnected if v ≥ 2.)
So we get v = 1, e = 0, f = 1.
∴ v− e+ f = 1−0+1 = 2.
INDUCTION HYPOTHESIS: Assume v− e+ f = 2 for all connected plane graphs with less

than e edges.
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Let xy be an edge of G.
We have two cases.

(i) xy is on a cycle. So xy is a boundary edge of two faces.
Deleting xy merges the two faces (resulting in one face).
Call the new graph G′. It is still a connected plane graph.
Note that G′ has v vertices, e−1 edges, and f −1 faces.
By IH, v− (e−1)+( f −1) = 2.
∴ v− e+ f = 2.

(ii) xy is not a cycle. So xy is the boundary edge of only one face.
Deleting xy does not change the number of faces, but disconnects the graph.
We get two subgraphs G1 with v1 vertices, e1 edges, f1 faces, and G2 with v2 vertices, e2
edges, f2 faces.
We get that v = v1 + v2, ...
By IH, since e1,e2 < e, we have that v1...

□

Corollary 3.7.2 Every planar embedding of a planar graph has the same number of faces.

Proof. Let G be a planar graph with v vertices and e edges.
Let G1 and G2 be plane graphs that are both planar representations of G and suppose G1 with

v1 vertices, e1 edges, f1 faces, and G2 with v2 vertices, e2 edges, f2 faces.
Since G1 and G2 are both drawings of G, they are isomorphic as graphs, implying v1 = v2 = v

and e1 = e2 = e.
By Euler’s formula, f1 = 2+ e1 − v1 = 2+ e− v and f2 = 2+ e2 − v2 = 2+ e− v.
∴ f1 = f2. □

Definition 3.7.3 — Degree of a face. The degree of a face F is the length of its boundary,
deg(F).

Think of each edge as having two sides. Edges that are entirely in one face (i.e., don’t belong to
any cycle) are counted twice to the degree of the face.

Figure 3.6: Counting edges for the degree of a face

Recall the handshaking lemma: Let G be a graph. Then ∑v∈V (G) deg(v) = 2 |E(G)|. We get an
analogous lemma for faces.

3.7.2 Handshaking lemma for faces

Theorem 3.7.3 — Handshaking lemma for faces. Let G be a plane graph. Then

∑
face F

deg(F) = 2 |E(G)| .
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This holds because every edge either forms part of the boundary of two faces or appears twice
on the boundary of a single face. (See Figure 3.6.) So either way, that edge contributes 2 to the
total sum of degrees of the faces.

Corollary 3.7.4 — Corollary to Euler’s formula. Let G be a connected planar graph with v ≥ 3
vertices and e edges. Then e ≤ 3v−6.

Furthermore, if G is bipartite, then e ≤ 2v−4.

Proof. Suppose a graph G has a planar embedding with f faces.
Since G is connected and has at least 3 vertices, every face must have degree at least 3.
By handshaking lemma for faces, we have 2e = ∑face F deg(F)≥ ∑face F 3 = 3 f .
So f ≤ 2

3 e.
By Euler’s formula, v− e+ f = 2.

f = 2− v+ e ≤ 2
3

e

1
3

e ≤ v−2

e ≤ 3v−6

For a bipartite graph G, G has no odd cycles, so every face must have at least degree 4.
So 2e ≥ 4 f , and by a similar argument with Euler’s formula, e ≤ 2v−4. □

3.7.3 Nonplanar graphs
This lets us show the following graphs are not planar.

Theorem 3.7.5 K5 is not planar.

Proof. Assume K5 is planar.
Then e ≤ 3v−6 by the corollary to Euler’s formula.
But v = 5 and e = 10, a contradiction since 3v−6 = 9 < 10 = e. □

Theorem 3.7.6 K3,3 is not planar.

Proof. Assume K3,3 is planar.
Then e ≤ 2v−4 by the corollary to Euler’s formula since K3,3 is bipartite.
But v = 6 and e = 9, a contradiction since 2v−4 = 8 < 9 = e. □

Definition 3.7.4 — Subdivision. An edge xy of a graph can be subdivided by placing a vertex
somewhere along its length.

A graph which has been derived from G by a sequence of edge subdivision operations is
called a subdivision of G.

Theorem 3.7.7 — Kuratowski’s Theorem. A graph G is planar if and only if no subgraph of G
is a subdivision of K5 or K3,3.

Proposition 3.7.8 Every subgraph of a planar graph is also planar (i.e., if a graph G contains a
nonplanar subgraph, then G is not planar).

If we represent G as a plane graph, then its subgraphs are also plane graphs (by deleting edges
and vertices, which does not produce edge crossing).



3.8 Graph Colouring 39

Proposition 3.7.9 Every subdivision of a planar graph is also planar (i.e., if a graph G is a
subdivision of a nonplanar graph, then G is not planar).

Represent G as a plane graph. Then subdividing edges does not produce edge crossings, thus
are also plane graphs.

These two propositions prove one direction of Kuratowski’s theorem:
If G has a subgraph that is a subdivision of K5 or K3,3, then G is nonplanar.

■ Example 3.6 The Petersen graph is nonplanar. Figure 3.7 shows that there is a subgraph
which is a subdivision of K3,3. ■

Figure 3.7

Exercise 3.6 Let G be a connected planar graph where every vertex has degree 3. If in a plane
representation of G every face has degree either 5 or 6, and there are 20 faces of degree 6, then
how many faces are there of degree 5?

3.8 Graph Colouring

Definition 3.8.1 — Graph colouring. A colouring of a graph G is an assignment of colours
(or labels) to V (G) so that adjacent vertices receive different colours.

Some textbooks use the phrase proper colouring to distinguish from colourings that don’t
respect adjacent vertices.

If k colours are used, we call the assignment a k-colouring.

■ Example 3.7 Give a colouring of the Petersen graph. ■

Sometimes we use numbers instead of colours.

Definition 3.8.2 — k-colourable. A graph G is called k-colouring if G has a colouring with at
most k colours.

Definition 3.8.3 — Chromatic number. The minimum k for which G is k-colourable (i.e., has
a k-colouring) is called the chromatic number of G is denoted by χ(G).

Note that exhibiting a k-colouring gives an upper bound.
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■ Example 3.8 Compute the chromatic number for the paths, cycles, and complete graphs. ■

For n ≥ 2, we have χ(Pn) = 2.
For n ≥ 3, we have

χ(Cn) =

{
2 if n even
3 if n odd

For n ≥ 2, we have χ(Kn) = n because every vertex adjacent.

Exercise 3.7 Determine χ(H) given H in 3.8

Figure 3.8: H

Proof. We prove χ(H) = 4 by showing both χ(H)≥ 4 and χ(H)≤ 4.
We first show that χ(H)≥ 4.
For contradiction, assume χ(H)≤ 3 and suppose we have a colouring using colours 1,2,3.

Since vertices A,B,E form K3, each has a different colour.
WLOG, suppose A has colour 1, B has colour 2, and C has colour 3.
Then D must have colour 2 (since D adjacent to A,E).
Then F must have colour 1 (since F adjacent to B,E).
Then G must have colour 3 (since G adjacent to D,F).
So C must have colour 3 (since C adjacent) □

Figure 3.9: H

Theorem 3.8.1 For a graph G, χ(G) = 2 if and only if G is a bipartite graph with at least one
edge.

Note a graph with no edges is bipartite has χ(G) = 1.

Proof. Suppose that χ(G) = 2.
Then there is a 2-colouring of G; suppose it uses colours 1 and 2.
Let V1 be the set of vertices of colour 1 and let V2 be the set of vertices of colour 2.
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Since we have a colouring, there are no edges whose endpoints are both in V1 (otherwise
adjacent vertices are both coloured with colour 1). Similarly, there are no edges whose endpoints
are both V2.

Therefore, the sets V1 and V2 form a bipartition of G, implying G is bipartite.
Finally, since χ(G) = 2, we require 2 colours, thus G must have least one edge.
∴ G is a bipartite graph with at least one edge.
Suppose that G is a bipartite graph with at least one edge.
Let V1 and V2 form a bipartition of G.
Colour the vertices in V1 with colour 1 and the vertices in V2.
No pair of adjacent vertices have the same colour by the definition of bipartition.
Thus, this is a 2-colouring of G, implying χ(G)≤ 2.
Since G has at least one edge, the endpoints of that edge must be different colours. So

χ(G)≥ 2.
∴ χ(G) = 2. □

Definition 3.8.4 — Clique. A clique of a graph G is a complete subgraph.
The clique number of G, denoted by ω(G), is the maximum size of a clique in G.

■ Example 3.9 ω(K3,3) = 2 because K3,3 bipartite, and thus has no odd cycles, so no K3 ∼=C3.
■

3.8.1 Graph colouring bounds

The following theorem gives a lower bound on the chromatic number.

Theorem 3.8.2 Let G be a graph. Then χ(G)≥ ω(G).

This follows because every vertex of a clique requires its own colour.
Many upper bounds are obtained from graph colouring algorithms.

Theorem 3.8.3 Let G be a graph on n vertices. Then χ(G)≤ n.

We colour vi by colour i, which produces an n-colouring since adjacent vertices must have
different colours.

A better algorithm would be a greedy algorithm that uses "the least available colour".
• Let G be a graph on n vertices. Order the vertices as v1,v2, . . . ,vn.
• Colour v1 using colour 1.
• For i = 2,3, . . . ,n, colour vi the smallest colour that is not used on its lower-index neighbours.

Figure 3.10
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Note the graph in Figure 3.10 is actually bipartite.

Figure 3.11

If we use the greedy algorithm to the vertex order (v1,v3,v5,v7,v2,v4,v6,v8), then we get the
colouring on the right of Figure 3.11, which is optimal. So χ(G) = 2.

Theorem 3.8.4 Let G be a graph with maximum degree ∆(G). Then χ(G)≤ ∆(G)+1.

In the proof, we use a greedy colouring and note that in a vertex ordering, each vertex has at
most ∆(G) earlier neighbours. So, one of {1,2, . . . ,∆(G),∆(G)+1}.

We can reorder vertiecs in the greedy algorithm to give an optimal colouring because, by
definition of χ(G), these is a colouring of G using χ(G) colours. Then you can put all the vertices
of colour 1 in the beginning, then colour 2, colour 3, and so on.

Theorem 3.8.5 — Brooks’ Theorem. If G is a connected that is not an odd cycle or complete
graph, then χ(G)≤ ∆(G).

3.9 Map colouring

Map-makers colour the different regions so that if two regions share a border, they are not coloured
the same, making it easier to distinguish the border between them. In the past, using more colours
increased the cost to produce the map, so we ask: Is there a bound on the number of colours
required to colour any given map?

We can rephrase this problem in terms of planar graphs: How many colours are needed to
colour a planar graph? If G is a planar graph, what is the best upper bound for χ(G)?

In 1885, De Morgan sent a letter to Hamilton which made the following conjecture, the Four
Colour Conjecture: Every planar graph is 4-colourable. In 1879, Kempe published a flawed proof,
and in 1880, Tait also published a flawed proof. Heawood finds the flaw in Kempe’s proof in 1890,
then proves the Five Colour Theorem: Every planar graph is 5-colourable. Petersen finds the flaw
in Tait’s proof in 1891.

It isn’t until 1976 that the Four Colour Theorem is proved by Appel and Haken (with assistance
from Koch) notably using computers. They reduce the infinite number of possibilities ot a finite
number, approximately 1936 configurations that were checked.

Theorem 3.9.1 — Lemma for Six Colour Theorem. Let G be a planar graph. Then G has a
vertex of degree at most five.

Proof. If G has at most six vertices, the statement clearly holds, so assume G has at least seven
vertices.

For contradiction, assume deg(v)≥ 6 for all v ∈V (G).
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By Handshaking lemma,

2 |E(G)|= ∑
v∈V (G)

deg(v)≥ ∑
v∈V (G)

6 = 6 |V (G)| .

Thus, |E(G)| ≥ 3 |V (G)|.
But since G is planar, by Corollary to Euler’s formula, we must have |E(G)| ≤ 3 |V (G)|−6.

(Note we only prove this corollary for connected planar graphs, but it also holds for disconnected
planar graphs.)

Thus 3 |V (G)| ≤ |E(G)| ≤ 3 |V (G)|−6, so 0 ≤−6. Contradiction. □

Theorem 3.9.2 — Six Colour Theorem. Every planar graph G is 6-colourable, that is, χ(G)≤ 6.

Proof. We use induction on the number of vertices in the graph.
BASE CASE: It holds for graphs with at most 6 vertices.
INDUCTION HYPOTHESIS: Assume it holds for planar graphs with less than n vertices.
INDUCTION STEP: Let G be a planar graph with n vertices. We want to show the statement

holds for G.
By Lemma 3.9.1, G has a vertex v with deg(v)≤ 5.
Delete vertex v and all incident edges to form the graph G′ = G− v.
By IH, we can colour the vertices of G′ with at most six colours. Since deg(v) ≤ 5, the

neighbours of v use at most 5 colours.
So there is an unused colour that we can use to colour v which gives rise to a 6-colouring of

G.
∴ χ(G)≤ 6 □

Theorem 3.9.3 — Five Colour Theorem. Every planar graph G is 5-colourable, that is, χ(G)≤
5.

This proof uses "Kempe" chains.
Proof. Let G be a smallest (least number of vertices) possible graph that is planar and requires
6 colours.

Let v be a vertex with deg(v)≤ 5, which exists by Lemma 3.9.1.
We get the following cases:

(i) Consider when deg(v)≤ 4.
We can delete v to form G′ = G−v. Then G′ can be coloured using ≤ 5 colours (otherwise
G is not smallest planar graph requiring 6 colours).
Take a 5-colouring of G′. Now a colour is available for v from set {1,2,3,4,5}.
So G is 5-colourable. Contradiction.

(ii) Consider when deg(v) = 5.
Again, we can delete v to form G′ = G− v and then G′ can be coloured using ≤ 5 colours
(otherwise G is not smallest planar graph requiring 6 colours).
If v has two neighbours which are coloured the same, then a colour is available for v, and
so G is 5-colourable. Contradiction.
So consider instead when all 5 of v’s neighbours have different colours.
Assume we have a plane graph of G. That is, we fix the position of v to be adjacent to vi

for each i = 1,2,3,4,5. WLOG, we colour vi with i for each i = 1.
Consider as a subgraph H of G with all vertices with colours 1 and 3 and their edges.

a) If v1 and v3 are in different components of H, then we can switch the colour classes 1
and 3 for one of the components, forming a new colouring of G′ where v1 has colour
3. Now colour 1 is available for v. So G is 5-colourable. Contradiction.
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b) If v1 and v3 are in a single component of H, then it is possible that v1 and v3 are
connected by an alternating path of colour 1,3,1,3,1,3. So v is in this cycle from
C = vv1Pv3v.
Consider v2 and v4 with colours 2 and 4 making a new subgraph H ′. If they are in
different components, we can do the same colour switch as earlier. If they are in
the same component, we have a path P′ in H connecting v2 and v4, creating a cycle
C′ = vv2P′v4. But this cycle must cross edges with C′, so it is not planar. (These two
cycles crossing is the Kempe chain.)

□

3.10 Eulerian Graphs

The Seven Bridges of Konigsberg is a problem Euler solved that led to the creation of graph theory,
and it involves walks in multigraphs.

Definition 3.10.1 — Walk. A walk in a (multi-)graph G is a sequence

W = v0e1v1e2v2 · · ·vk−1ekvk

whose terms alternate between vertices and edges (not necessarily distinct) such that ei = vi−1vi

for 1 ≤ i ≤ k. When G is a simple graph, we write W = v0v1 · · ·vk.
The length of a walk is the number of edges it contains.

Definition 3.10.2 — Types of walks. A trail is a walk such that all of its edges are distinct.
A path is walk such that all of its vertices and edges are distinct.
A closed walk is a walk whose initial and terminal vertices are the same (i.e., v0 = vk).
An xy-walk is a walk from vertex x to vertex y.
An Euler trail is a trail that visits every edge exactly once.
An Euler tour is a closed Euler trail.
An Eulerian graph is a graph with an Euler tour.

Theorem 3.10.1 Let G be a connected (multi-)graph. Then G is Eulerian if and only if every
vertex of G has even degree.

Proof. Let G be Eulerian. Then it has an Euler tour. Tach passage of an Euler tour through a
vertex uses two incident edges.

∴ Every vertex of G has even degree.
Suppose every vertex of G has even degree.
We use induction on the number of edges in the graph.
BASE CASE: True for 0, 1, 2, 3 edges. K1 is trivially true. A two edge, two vertices

multigraph, as well as K3 have Euler tours.
INDUCTION HYPOTHESIS: Assume it holds for graphs with ≤ m edges. (We’re using strong

induction.)
INDUCTION STEP: Let G be a connected graph with m+ 1 edges. We want to show the

statement holds for G.
Suppose all vertices of G has even degree.
No vertex has degree 0 since it is connected.
All vertices x satisfy deg(x)≥ 2. Then by Theorem 3.5.3 (cycle existence), G has a cycle C.

Delete all edges of C.
Note that all vertices in G′ has even degree (since vertices either lose 2 edges or none).
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G′ could be disconnected. By IH, since each component has ≤ m edges, they each have an
Euler tour.

The following algorithm gives an Euler tour of G: traverse C but when a component of G′ is
entered for the first time, we detour along an Euler tour of that component.

□

Theorem 3.10.2 Let G be a connected (multi-)graph. Then G has an Euler trail if and only if G
has at most two vertices of odd degree.

3.11 Independent Set

Definition 3.11.1 — Independent set. An independent set of a graph G is a set of vertices in
which no two are adjacent.

Definition 3.11.2 — Maximal independent set. A maximal independent set is an independent
set that is not a subset of any other independent set.

Definition 3.11.3 — Maximum independent set. A maximum independent set is a largest
size independent set in a graph G.

Figure 3.12

Note that the graph in Figure 3.12 is Q3, the graph of a cube.

Definition 3.11.4 — Independence number. The size of a maximum independent set of a
graph G is the independence number of G, α(G).

■ Example 3.10 Consider the graph of a cube Q3 (as shown in Figure 3.12).
S = {a, f ,h,c} is an independent set of size 4. ∴ α(G)≥ 4.
For contradiction, suppose there exists S which is an independent set of S with size ≥ 5.
Consider edges ab, cd, e f , gh as pigeonholes, with vertices of S as pigeons. Then by

pigeonhole principle, S contains one of these 2-element sets as a subset. Then S isn’t independent.
Contradiction.

∴ α(G)≤ 4.
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∴ α(G) = 4. ■

Theorem 3.11.1 Let G be a graph. Then χ(G)≥ |V (G)|
α(G) .

Figure 3.13

Proof. Consider a colouring of G using the minimum number χ(G) of colours.
Suppose the colours are {1,2, . . . ,χ(G)}.
Let Si be the set of vertices of G with colour i. (See figure 3.13.)
Each set Si is an independent set (by definition of a colouring).
By definition of independence number, |Si| ≤ α(G).
Then

|V (G)|=
χ(G)

∑
i=1

|Si| ≤
χ(G)

∑
i=1

α(G) = χ(G)α(G)

∴ χ(G)≥ |V (G)|
α(G) . □

3.12 Hamilton cycles and paths

The icosian game was invented by William Hamilton in 1857 which involves tracing the edges of a
dodecahedron such that each vertex is visited once and that you end where you start.

Figure 3.14
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Definition 3.12.1 — Hamilton path. A path that uses every vertex of a graph G exactly once is
a Hamilton path.

Definition 3.12.2 — Hamilton cycle. A cycle that uses every vertex of a graph G exactly once
is a Hamilton cycle.

Definition 3.12.3 — Hamiltonian. A graph G that contains a Hamilton cycle is Hamiltonian.

A Hamilton cycle can be converted to a Hamilton path by deleting an edge.

■ Example 3.11 The star graph K1,n for n ≥ 3 (i.e., the complete bipartite graph with 1 vertex
connected to n other vertices) has no Hamilton path or Hamilton cycle.

K5∪K5 with a single edge connecting the two graphs has a Hamilton path but not a Hamilton
cycle. ■

Figure 3.15

■ Example 3.12 Consider the grid graph G in Figure 3.15.
It has a Hamilton path: start at the top-left, go right, go down one, go left, go down one, and

repeat.
It does not have a Hamilton cycle: G is bipartite (consider a checkerboard pattern) with

|V1|= 13 and |V2|= 12. ■

We can generalize to any m×n grid graph. The grid graph is Hamiltonian iff the product mn is
even (so at least one of m,n is even).

Proposition 3.12.1 Let G be a bipartite graph with bipartition (V1,V2). If G has a Hamilton
cycle, then |V1|= |V2|.

We can order the vertices in X and Y . So we can create a cycle x1y1x2y2 . . .xkylx1. We can’t do
this if the bipartition has different sized sets.

Consider the graph Kn with 1 extra vertex attached with one edge. It has
(n−1

2

)
+1 edges and is

not Hamiltonian. So we can’t just look at the number of edges.
Think about A3 Q5: if δ (G) ≥ 2, then G contains a cycle of length at least δ (G)+ 1. This

suggests a condition for a Hamilton cycle.

Theorem 3.12.2 — Dirac’s Theorem. If a graph G has n ≥ 3 vertices and δ (G)≥ n
2 , then G is

Hamiltonian.

Proof. Let G be a graph with n ≥ 3 vertices and δ (G)≥ n
2 .

Let P = v1v2 · · ·vk be a longest path.
Every neighbour of v1 is on P (because otherwise, if neighbour w of v1 not in P, then

P′ = wv1 . . .vk is longer than P, so P is not a longest path).
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v1 v2 v3
· · · v j v j+1

· · · vk−1 vk

Figure 3.16: Hamilton Cycle C

Note that k ≥ n
2 +1 (see A3 Q5 argument: path must contain at least all the n

2 neighbours).
Consider when v1 is adjacent to some v j+1 and vk is adjacent to v j (as in Figure 3.16). Then

C = v1v2 . . .v jvkvk−1 . . .v j+1v jv1.
CLAIM: There exists j such that 1 ≤ j ≤ k−1 such that v1 adjacent to v j+1 and vk adjacent

to v j.

Proof. For contradiction, suppose for all edges v1v j+1, then there is no edge between vkv j.
Then we get the following inequality:

|V (P)|= |{vk}|+ |{vi adjacent to vk}|+ |{vi not adjacent to vk}|
≥ 1+deg(vk)+deg(v1)≥

≥ 1+
n
2
+

n
2
= n+1

Contradiction. □
CLAIM: C is a Hamiltonian cycle.

Proof. For contradiction, suppose C is not a Hamiltonian cycle.
Then there is w ̸∈V (P). Since deg(w)≥ n

2 and k ≥ n
2 +1, there exists vi ∈V (P) with w

adjacent to vi. Then there is a path P′ = wvi . . . (which enters the cycle C at some vertex, then
continues along the cycle) longer than P. □

□

3.13 Tree
Definition 3.13.1 — Tree. A tree is a connected graph with no cycles.

A disconnected graph with no cycles has trees as components, so we call such a graph a forest.

Definition 3.13.2 — Leaf. A vertex with degree 1 in a tree is a leaf.

Theorem 3.13.1 — Tree Theorem. Let G be a connected graph with n ≥ 2 vertices. The
following are equivalent:

(i) G is a tree.
(ii) G is acyclic. (There are no cycles in G.)

(iii) Every edge of G is a cut edge (i.e., deleting the edge disconnects G).
(iv) |E(G)|= n−1.

Proof of (i) ⇒ (iv). We prove this by induction on n.
BASE CASE: n = 2 holds.
INDUCTION HYPOTHESIS: Suppose |E(G)|= n−1 for trees with n vertices.
INDUCTION CASE: Let G be a tree with n+1 vertices. Note that if δ (G)≥ 2, then G has a

cycle. So by contrapositive, since G has no cycles, δ (G)≤ 1. Since G is connected, δ (G)≥ 1.
So there exists a leaf x in G.

Consider G′ = G− x. Then G′ is a tree with n vertices. By IH, |E(G′)| = n− 1. Then
|E(G)|= |E(G′)|+1 = n = (n+1)−1. □
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4.1 Principle of Inclusion-Exclusion

Say that we want to find the cardinality of a union of two sets. We count every thing in the first set,
count everything in the second set, then subtract the overlap.

Theorem 4.1.1 If A,B are finite sets, then

|A∪B|= |A|+ |B|− |A∩B|

When we have three sets, we have to consider the intersection of all three sets, and add that
back. We can generalize this to n sets.

Theorem 4.1.2 — Principle of Inclusion-Exclusion (PIE). Let A1,A2, . . . ,An be finite sets. Then

|A1 ∪A2 ∪·· ·An|=

(
n

∑
i=1

|Ai|
)
−

(
∑

1≤i< j≤n

∣∣Ai ∩A j
∣∣)+

(
∑

1≤i< j<k≤n

∣∣Ai ∩A j ∩Ak
∣∣)

+ · · ·+((−1)n+1 |A1 ∩A2 · · ·∩An|)

We can write this compactly as:∣∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣∣= n

∑
k=1

(−1)k+1

(
∑

1≤i1<···<ik≤n
|Ai1 ∩Aik |

)

■ Example 4.1 Let A,B be sets with |A|= 4 and |9|.
THen the maximum of |A∩B| can be 5, the minimum of |A∩B| can be 0.
Also |A∪B|+ |A∩B|= 4+9−|A∩B|. Then 9 ≤ |A∪B| ≤ 13. ■

4.1.1 Complementary Forn of PIE
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Proposition 4.1.3 Let S be a universal set with subsets A and B. We let A denote the complement
of A in S.

Then
∣∣A∪B

∣∣= |S|− |A∪B|= |S|+(|A|+ |B|)+ |A∩B|.

Note that by DeMorgan’s Law,

n⋃
i=1

Ai =
n⋂

i=1

Ai.

■ Example 4.2 How many integers in {1,2, . . . ,100} are not divisible by 2, 3 or 5? ■

We have to ensure we don’t overcount the overlap such as with numbers divisible by both 2 and
3.

Proof. Let A1 be the elements of S divisible by 2.
Let A2 be the elements of S divisible by 3.
Let A3 be the elements of S divisible by 5.
Then the answer to our problem is

∣∣A1 ∩A2 ∩A3
∣∣.

LEMMA: The number of positive integers divisible by k less than or equal to N is ⌊N/k⌋.
By the lemma,

|A1|= ⌊100/2⌋= 50

|A2|= ⌊100/3⌋= 33

|A3|= ⌊100/5⌋= 20

|A1 ∩A2|= ⌊100/6⌋= 16

|A1 ∩A3|= ⌊100/10⌋= 10

|A2 ∩A3|= ⌊100/15⌋= 6

|A1 ∩A2 ∩A3|= ⌊100/30⌋= 4

Then, we can use PIE to calculate the number. □

■ Example 4.3 Determine the number of integer solutions to y1 + y2 + y3 + y4 ≤ 70 such that
1 ≤ y1 ≤ 12, 0 ≤ y2 ≤ 10, −3 ≤ y3 ≤ 13, and 5 ≤ y4 ≤ 35. ■

We need this lemma:

Theorem 4.1.4 — Lemma for integer solutions. Let k1 and c1,c2, . . . ,ck be integers. The
number of integer solutions to ∑

k
i=1 xi = n where xi ≥ ci for i = 1, . . . ,k is((

n−∑
k
i=1 ci

)
+ k−1

k−1

)
.

A proof of this involves using the substitution yi = xi − ci ≥ 0, so that ∑
k
i=1 yi = n−∑

k
i=1 ci

Proof. To get an equivalent problem, we add a slack variable y5 with the equation y1 + y2 + y3 +
y4 + y5 = 70.

Then we substitute with new variables: x1 = y1 −1, x2 = y2, x3 = y3 +3, x4 = y4 −5, and
x5 = y5.

The following problem is equivalent:
Number of solutions to x1 + x2 + x3 + x4 + x5 = 67 such that 0 ≤ x1 ≤ 11, 0 ≤ x2 ≤ 10,

0 ≤ x3 ≤ 16, 0 ≤ x4 ≤ 30, and x5 ≥ 0.
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Let S be the set of all nonnegative integer solutions to x1 + x2 + x3 + x4 + x5 = 67. This will
overcount due to upper bounds.

Let X1 be the set of solutions where x1 ≥ 12 (and xi ≥ 0 for i ̸= 1). Let X2 be the set of
solutions where x2 ≥ 11 (and xi ≥ 0 for i ̸= 2). Let X3 be the set of solutions where x3 ≥ 17 (and
xi ≥ 0 for i ̸= 3). Let X4 be the set of solutions where x4 ≥ 31 (and xi ≥ 0 for i ̸= 4).

Then we apply the lemma and use PIE.

|S|=
(

71
4

)
|X1|=

(
59
4

)
|X2|=

(
60
4

)
|X3|=

(
54
4

)
|X3|=

(
40
4

)
...

□

■ Example 4.4 Compute the number of arrangements of AAABBBCCC such that there are no
three identical consecutive letters. ■

Proof. We know the total number of arrangemnets with no restrictions is
( 9

3,3,3

)
= 9!

3!3!3! = 1680.
Let S be the set of all arrangements.
Let RA be the subset of S of arrangements with 3 A’s in a row.
Let RB be the subset of S of arrangements with 3 B’s in a row.
Let RC be the subset of S of arrangements with 3 C’s in a row.
Then use PIE. We want∣∣RA ∩RB ∩RC

∣∣= ∣∣RA ∪RB ∪RC
∣∣= S− (|RA|+ |RB|+ |RC|)+ · · ·

|RA|=
( 7

3,3,1

)
. |RA ∩RB|=

( 5
3,1,1

)
. |RA ∩RB ∩RC|=

( 3
1,1,1

)
.

□

4.2 Recurrence Relations
■ Example 4.5 The Fibonacci sequence with pattern

1,1,2,3,5,8,13,21,34, . . .

can be defined using a recurrence:

F1 = 1, F2 = 1, Fn = Fn−1 +Fn−2(n ≥ 3).
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A closed-form solution is

Fn =
1√
5

(
1+

√
5

2

)2

− 1√
5

(
1−

√
5

2

)2

, n ≥ 1.

This is known as Binet’s formula. ■

Definition 4.2.1 — Recurrence relation. Given a sequence {a0,a1,a2,a3, . . .} of numbers, a
recurrence relation for an is an equation that relates the n-th term an to some of its predecessors
in the sequence.

To initiate the computation, we require initial conditions.
The solution to a recurrence relation is an expression an = f (n) where f (n) is a function

satisfying the recurrence and initial conditions.

■ Example 4.6 Consider the recurrence relation

a1 = 1, an = an−1 +1, (n ≥ 2).

The pattern appears to be an = n.
We indeed have a1 = 1. Also, the LHS is an = n and the RHS is an−1 +1 = (n−1)+1. ■

■ Example 4.7 Consider the recurrence relation

a1 = 1, an = nan−1, (n ≥ 2).

This is the definition for n!. ■

■ Example 4.8 Consider the recurrence relation

a0 = 1, an = πan−1, (n ≥ 2).

This gives a geometric series an = πn.
We indeed have a0 = π0 = 1. Also, the LHS is an = πn and the RHS is πan−1 = π ·πn−1 = πn.

■

See that the Fibonacci sequence also has a geometric solution.

■ Example 4.9 Consider the recurrence relation

a0 = 1, a1 = 2, a2 = 0 an = 2an−1 +an−2 −2an−3 (n ≥ 3).

■

This example is more complicated.
The first few terms are {1,2,0,0,−4,−8,−20,−40, . . .}. Ignoring initial conditions, we might

guess a solution an = 2n. Then LHS is an = 2n and RHS is 2(2n−1)+2n−2−2(2n−3) = 2n+2n−2−
2n−2=2n

. However, the initial conditions are not satisfied.
Observe that an = c2n for any constant c also solves the recurrence. Also observe that an =

c(−1)n for any constant c also solves this recurrence. We can also observe that an = c(1)n = c for
any constant c also solves this recurrence.

Are there any other solutions of the form xn?



4.2 Recurrence Relations 53

Assuming an = xn solves the recurrence, we get:

xn = 2xn−1 + xn−2 −2xn−3

xn −2xn−1 − xn−2 +2xn−3 = 0

xn−3(x3 −2x2 − x+2) = 0

xn−3(x−1)(x+1)(x−2) = 0

We get x = 0, x = 1, x =−1, x = 2. This shows that (1)n, (−1)n, and 2n are solutions to the
recurrence (ignoring 0n).

We can take a linear combination of solutions to form new ones:

an =C1(1)n +C2(−1)n +C3(2)n.

All solutions satisfy the recurrence, but only some satisfy the initial conditions. Fix the initial
conditions, then we get:

n = 0 : 1 =C1 +C2 +C3

n = 1 : 2 =C1 −C2 +2C3

n = 2 : 0 =C1 +C2 +4C3

Solving this system gives C1 = 2, C2 = −2/3, and C3 = −1/3. So the solution to the original
recurrence with the specified initial conditions is

an = 2− 2
3
(−1)n − 1

3
(2)n.

Definition 4.2.2 — Constant coefficient linear homogeneous recurrence relations. Let
{an} be a sequence. Then

c0an + c1an−1 + c2an−2 + · · ·+ cran−r = 0 (∗)

where ci is constant (c0,cr ̸= 0) and r is fixed 1 ≤ r ≤ n is an rth order constant coefficient linear
homogeneous recurrence relation.

■ Example 4.10 • an = an−1 +an−2 is 2nd order, constant coefficient, linear, and homoge-
neous.

• an −2an−1 +3an−2 −an−3 is 3nd order, constant coefficient, linear, and homogeneous.
• an +an−1 +(an−2)

2 is not linear.
• an = an−1 +an−2 +2 is not homogeneous.
• an = nan−1 is not constant coefficient.

■

Definition 4.2.3 — Characteristic equation. For (∗), replacing ai with xi and factoring out
xn−r gives

c0xr + c1xr−1 + · · ·+ cr−1x+ cr = 0

which is called the characteristic equation. Its roots are called the characteristic roots.
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Each characteristic root α gives a solution an = αn of the recurrence.

Theorem 4.2.1 — Linear combinations of solutions. If an = f (n) and g(n) are solutions to
(∗), then so is an =C1 f (n) =C2g(n).

Proof.

c0(C1 f (n+C2g(n)))+ c1(C1 f (n−1)+C2g(n−1))+ · · ·+ cr(C1 f (n− r)+C2g(n− r))

= C1(c0 f (n)+ c1 f (n−1)+ · · ·+ cr f (n− r))+C2(c0g(n)+ c1g(n−1)+ · · ·+ crg(n− r))

= 0+0 = 0

□

Theorem 4.2.2 — Distinct Roots. If α1,α2, . . . ,αr are distinct characteristic roots, then the
general solution to (∗) is

an =C1(α1)
n +C2(α2)

n + · · ·+Cr(αr)
n

where C1,C2, . . . ,Cr are constants dependant on the initial conditions.

Each (αi)
n solves (∗), any linear combination of (αi)

n solves (∗), so we get a set of r linearly
independent solutions to (∗).

Theorem 4.2.3 — Repeated Roots. If α1,α2, . . . ,αr are distinct characteristic roots with
multiplicity mi, then the general solution to (∗) is

an =(C11 +C12n+C13n2 + · · ·+ c1m1nm1−1)(α1)
n

+(C21 +C22n+C23n2 + · · ·+ c1m2nm2−1)(α2)
n

+ · · ·+(Ck1 +Ck2n+Ck3n2 + · · ·+ ckmk n
mk−1)(αk)

n

That is

an = P1(n)(α1)
n + · · ·+Pk(n)(αk)

n

where Pi(n) is a polynomial with degree less than mi.

■ Example 4.11 How many strings of length n are there using a’s, b’s, and c’s such that no two
a’s are consecutive? ■

Proof. Let hn be the number of allowed strings of length n.
The first letter can be a, b, c. Then we append the strings of length n− 1 satisfying the

condition.
The number of strings starting with b is hn−1, and starting with c is hn−1. If it’s starting with

a, then the next letters must be b or c. The number of strings starting with ab is hn−2 and starting
with ac is hn−2. This gives the recurrence

hn = 2hn−1 +2hn−2, n ≥ 2.

We have initial conditions h0 = 1 (include the empty string) and h1 = 3. (We could start at
h1,h2 instead, getting h2 = 8.)

We get the characteristic equation by substituting hn = xn.
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xn = 2xn−1 +2xn−2

x2 = 2x+2

Then x = 1±
√

3.
The general solution is hn =C1(1+

√
3)n +C2(1−

√
3)n.

This gives the system of equations:

n = 0 : 1 =C1 +C2

n = 1 : 3 =C1(1+
√

3)2 +C2(1−
√

3)2

Solving the system, we get C1 = 2+
√

3
2
√

3
and C2 = −2+

√
3

2
√

3
. This gives the solution to the

recurrence hn =
2+

√
3

2
√

3
(1+

√
3)n + −2+

√
3

2
√

3
(1−

√
3)n. The answer to the question is h10. □

■ Example 4.12 Solve the recurrence

an =−an−1 +3an−2 +5an−3 +2an−4 (n ≥ 4)

with a0 = 1, a1 = 0, a2 = 1, a3 = 2. ■

Proof. We get the characteristic equation

x4 =−x3 +3x2 +5x+2.

This can be factored into (x+1)3(x−2) = 0. (Guess the roots, then do synethetic division
until you have a quadratic.)

Then x = 2,−1,−1,−1 are the characteristic roots.
We need 4 linearly independent solutions. (If in doubt, then multiply by n to generate new

solutions.)
So we get solutions (−1)n, n(−1)n, n2(−1)n, and 2n. The general solution is(

C1 +C2n+C3n2)(−1)n +C42n.

This gives the system of equations:

n = 0 : 1 =C1 +C4

n = 1 : 0 = (C1 +C2 +C3)(−1)+2C4

n = 2 : 1 = (C1 +2C2 +4C3)+4C4

n = 3 : 1 = (C1 +3C2 +9C3)(−1)+8C4

Use row reduction to solve the system.
The constants are then C1 = 7/9, C2 =−3/9, C3 = 0, and C4 = 2/9.
∴ an =

(7
9 −

3
9

)
(−1)n + 2n+1

9 . □

■ Example 4.13 Find a recurrence relation that has a solution an = (−2)n +(2+n)(1)n. ■

Proof. The numbers −2 and 1 are characteristic roots of multiplicities 1 and 2 (since (1)n has a
degree one polynomial associated with it).

A possible characteristic equation is then (x+3)(x−1)2 = 0.
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So x3 = 3x−2 implying 3an−2 −2an−3. Then we find the initial conditions by fixing n. □

Definition 4.2.4 — Constant coefficient linear non-homogeneous recurrence relations.
Let {an} be a sequence. Then

c0an + c1an−1 + c2an−2 + · · ·+ cran−r = f (n) (∗∗)

where ci is constant (c0,cr ̸= 0) and r is fixed 1 ≤ r ≤ n is an rth order constant coefficient linear
non-homogeneous recurrence relation.

First find a general solution a(h)n for c0an + c1an−1 + c2an−2 + · · ·+ cran−r = 0. Then find a
paricular solution a(p)

n of (∗∗). The general solution is then an = a(h)n +a(p)
n .

■ Example 4.14 Solve an = 3an−1 −2an−2 +2n with a0 = 3,a1 = 8. ■

Proof. First, solve the homogeneous recurrence.
Consider an = 3an−1 − 2an−2. It has characteristic equation x2 = 3x− 2, which has roots

x = 1 and x = 2. So the general solution to the homogeneous recurrence is a(h)n = A(1)n +B(2)n.
Now find a particular solution for a(p)

n . Guess and check with functions of the same form.
f (n) = 2n suggests a(p)

n = C2n. Note this already is a solution to the homogeneous part, so
multiply by n. Try a(p)

n =Cn2n.
Then we get the following equation:

Cn2n = 3C(n−1)2n−1 −2C(n−2)2n−2 +2n

4Cn = 6C(n−1)−2C(n−2)

Solving for coefficients of n and 1, we get 4C = 6C−2C, and 0 =−6C+4C+4, which has the
solution C = 2.

That is, c = 2 solves the recurrence. So a(p)
n = 2n2n = n2n+1.

Then an = a(h)n +a(p)
n = A(1)n +B(2)n +n2n+1.

To complete the solution, we solve for the initial conditions to give a system of equations.
Then A = 2 and B = 1.

∴ an = 2+2n +n2n+1

□

4.3 Generating Functions
A generating function encodes a sequence and allows us to solve combinatorial problems alge-
braically. Applications include finding exact formulas for the terms of a sequence, discovering new
recurrence relations, proving combinatorial identities.

■ Example 4.15 Determine the number of integer solutions to

a+b+ c = n

where 0 ≤ a ≤ 2, 0 ≤ b ≤ 1, and 2 ≤ c ≤ 3. ■

Proof. Consider the function g(x) = (x0 + x1 + x2)︸ ︷︷ ︸
a=0,1,2

×(x0 + x1)︸ ︷︷ ︸
b=0,1

×(x2 + x3)︸ ︷︷ ︸
c=2,3

.

The answer to the problem is the coefficient of xn in g(x).
Consider expanding g(x) and note the bijection between the ways to form xn and solutions

(a,b,c) to the problem.
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For example, consider the term x4.

(x0 + x1 + x2) (x0 + x1) (x2 + x3) a b c
x0 x1 x3 0 1 3
x1 x0 x3 1 0 3
x1 x1 x2 1 1 2
x2 x0 x2 2 0 2

When expanding, we get g(x) = x2 +3x3 +4x4 +3x5 + x6. □

Definition 4.3.1 The coefficient of xn in g(x) is [xn]g(x).

We will need geometric series/sequences to find a closed form for g(x).

Proposition 4.3.1 — Geometric series/sequences.

n

∑
k=0

ark = a
(

1− rn+1

1− r

)
and

∞

∑
k=0

ark =
a

1− r

We will use the following in particular:

■ Example 4.16 (i) 1+ x+ x2 + x3 + · · ·= 1
1−x

(ii) 1+ x2 + x4 + x6 + · · ·= 1
1−x2

(iii) x2 + x3 + x4 + x5 + · · ·= x2(1+ x+ x2 + x3 + · · ·) = x2

1−x (= 1
1−x −1− x)

(iv) 1+ x+ x2 + x3 + x4 = 1−x5

1−x
■

■ Example 4.17 Suppose we have several red, green, and blue balls. In how many ways can we
select n balls if we must have at least two red, at most one green, and an even number of blue
balls. ■

Proof. We want the number of integer solutions to r+ g+ b = n with r ≥ 2, 0 ≤ g ≤ 1, and
b ≤ 0 is even.

Consider the function g(x) = (x1 + x2 + x3 + · · ·)× (x0 + x1)× (x0 + x2 + x4 + x6 + · · ·).
There is a bijection between combinations of red, green, blue and combinations of terms. For

example, choosing 3 red, no green, and 4 blue corresponds to x3x0x4 = x7 in the expansion of
g(x).

Remark that g(x) is a power series with an infinite number of terms.
We could choose 2 red balls OR 3 OR 4 OR · · · , AND we could choose 0 green balls OR 1,

AND we could choose 0 blue balls OR 2 OR 4 OR · · · . Note how the +’s correspond to OR’s
and ×’s correspond to AND’s.

The answer to the problem is [xn]g(x).
Note the derivative of Example 4.16(i) is ((1− x)−1)′ = −1(1− x)−2 · (−1), so we get

1
(1−x)2 = 1+2x+3x2 +4x3 + · · · (∗).
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Using Example 4.16, we get that

g(x) =
(

x2

1− x

)
(1+ x)

(
1

1− x2

)
=

(
x2

1− x

)
(1+ x)

(
1

(1+ x)(1− x)

)
= x2 1

(1− x)2

= x2(1+2x+3x2 +4x3 + · · ·) (By (∗))

(Use sigma notation.)
∴ g(x) = x2 +2x3 +3x4 +4x5 + · · ·= 0+0+∑

∞
n=2(n−1)xn

□

■ Example 4.18 How many ways can we fill a box with n snacks if the number of chocolate
bars is even, the number of cookies is a multiple of five, there are at most four pies, and there is
at most one mooncake. ■

Proof. The generating function is g(x) = (x0+x2+x4+ · · ·)×(x0+x5+x10+ · · ·)×(x0+x1+
x2 + x3 + x4)× (x0 + x1).

The answer to the problem is [xn]g(x). Using Example 4.16(i), (v), and the derivative of (i),
we get

g(x) =
(

1
1− x2

)(
1

1− x5

)(
1− x5

1− x

)
(1+ x)

=
1

(1− x)2

=
∞

∑
n=0

(n+1)xn

∴ [xn]g(x) = (n+1) for n ≥ 0. □

Definition 4.3.2 — Generating function. Let a0,a1,a2, . . . be a sequence. The generating
function of the sequence is

g(x) = a0 +a1x+a2x2 + · · ·=
∞

∑
k=0

akxk.

■ Example 4.19 — Some helpful power series. (i) a
1−x = ∑

∞
k=0 axk (Geometric series)

(ii) 1−xm+1

1−x = ∑
m
k=0 xk (Geometric sequence)

(iii) (1+ x)n = ∑
n
k=0
(n

k

)
xk, where n ∈ Z+ (Binomial theorem)

(iv) (1− xm)n = ∑
n
k=0(−1)k

(n
k

)
xmk, where n ∈ Z+ (substitute −xm into Binomial theorem)

(v) 1
(1−x)n = ∑

∞
k=0
(k+n−1

k

)
xk (special case of Generalized Binomial Theorem)

(vi) 1
2(e

x + e−x) = ∑
∞
k=0

x2k

(2k)! = coshx and 1
2(e

x − e−x) = ∑
∞
k=0

x2k+1

(2k+1)! = sinhx
(vii) If g(x) =

(
∑

∞
i=0 aixi

)(
∑

∞
j=0 b jx j

)
, then [xr]g(x) = ∑

r
k=0 akbr−k.

■
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■ Example 4.20 — Generating functions for sequences. (i) The generating function for
the sequence 1,1,1, . . . is g(x) = 1+ x+ x2 + x3 + · · ·= 1

1−x
(ii) The generating function for the sequence

(2022
0

)
,
(2022

1

)
,
(2022

2

)
, . . . ,

(2022
2022

)
,0,0, . . . is g(x) =(2022

0

)
+
(2022

1

)
x+
(2022

0

)
x2 + · · ·+

(2022
2022

)
x2022 = (1+ x)2022

(iii) The generating function for the sequence 1,2,3,4,5, . . . is g(x) = 1+2x+3x2+4x3+ · · ·=
d
dx(1+ x+ x2 + x3 + · · ·) = d

dx

( 1
1−x

)
= 1

(1−x)2 .
■

4.4 Generalized Binomial Theorem
Recall the binomial theorem (rewritten with y = 1).

Theorem 4.4.1 — Binomial theorem. For any integer n ≥ 0, we have (1+ x)n = ∑
n
k=0
(n

k

)
xk.

Isaac Newton (1̃665) generalized the binomial theorem to allow for n to to take on any real
number (and in fact, it can be generalized to complex values of n). Instead of a finite sum, we get
an infinite series. However, we must also generalize the notion of a binomial coefficient.

Definition 4.4.1 — Generalized binomial coefficient. For a ∈ R and k ∈ Z+, define(
a
k

)
=

a(a−1) · · ·(a− k+1)
k!

(
=

a
k
· (a−1)
(k−1)

· · · a− k+1
1

)
.

Also set
(a

0

)
= 1.

See we can rewrite
(n

k

)
= n!

k!(n−k)! =
n(n−1)···(n−k+1)

k! , so we’re using this to generalize: start at a
and count down k times.

■ Example 4.21 (i)
(−2

5

)
= (−2)(−3)(−4)(−5)(−6)

6! =−6
(ii)

(1/3
3

)
= (1/3)(1/3−1)(1/3−2)

3! = 5
81

■

Theorem 4.4.2 — Generalized binomial theorem. For any nonzero real number a ∈ R, we
have (1+ x)a = ∑

∞
k=0
(a

k

)
xk.

Theorem 4.4.3 If n ∈ Z+, then
(−n

k

)
= (−1)k

(n+k−1
k

)
.

Proof. By definition, we have(
−n
k

)
=

(−n)(−n−1) · · ·(−n− k+1)
k!

=
(−1)kn(n+1) · · ·(n+ k−1)

k!

= (−1)k
(

n+ k−1
k

)
□
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Corollary 4.4.4 If n ∈ Z+, then 1
(1+x)n = ∑

∞
k=0(−1)k

(n+k−1
k

)
xk.

■ Example 4.22 Let g(x) = 1
(1−x)4 be a generating function. What is the coefficient of xn in its

expansion? That is, find [xn] 1
(1−x)4 . ■

Proof. Using Corollary 4.4.4, and substituting x with −x and setting n = 4, we get

1
(1− x)4 =

∞

∑
k=0

(−1)k
(

3+ k
k

)
(−x)k

=
∞

∑
k=0

(−1)2k
(

3+ k
k

)
xk

=
∞

∑
k=0

(
3+ k

k

)
xk

∴ [xn] 1
(1−x)4 =

(3+k
k

)
. □

■ Example 4.23 Find the number of integer solutions to x1 + x2 + x3 = n where x1 ≥ 0, 0 ≤
x2 ≤ 2, x3 ≥ 0 and x3 must be even. ■

Proof. The generating function is g(x) = (1+ x+ x2 + · · ·)(1+ x+ x2)(1+ x2 + x4 + · · ·), and
the number of integer solutions is equivalent to the coefficient [xn]g(x).

Simplifying gives g(x) = 1
1−x(1+ x+ x2) 1

1−x2 =
1+x+x2

(1−x)(1−x)(1+x) =
1+x+x2

(1−x)(1−x)2 .

We can extract [xn]g(x) by using partial fractions: 1+x+x2

(1−x)(1−x)2 =
A

1+x +
B

1−x +
C

(1−x)2 .

Then 1+ x+ x2 = A(1− x)2 +B(1+ x)(1− x)+C(1+ x).
We could equate the coefficients on both sides after expanding to get a system of equations.

So the coefficient of x2 is 1 =−A+C, the coefficient of x is 1 = B−2C, and the coefficient of 1
is 1 = A+B+C.

Alternatively, we could plug in values for x.
When x = 1, we get 3 = 2C, so C = 3/2. When x =−1, we get 1 = 4A, so A = 1/4. When

x = 0, 1 = A+B+C, so B =−3/4.

g(x) =
A

1+ x
+

B
1− x

+
C

(1− x)2

=
1/4

1+ x
+

−3/4
1− x

+
3/2

(1− x)2

=
1
4
· 1

1+ x
− 3

4
· 1

1− x
+

3
2
· 1
(1− x)2

=
1
4

∞

∑
k=0

(−x)k − 3
4

∞

∑
k=0

xk +
3
2

∞

∑
k=0

(−1)k
(

2+ k−1
k

)
(−x)k (Corollary 4.4.4)

=
1
4

∞

∑
k=0

(−1)kxk − 3
4

∞

∑
k=0

xk +
3
2

∞

∑
k=0

(k+1)xk (
(k+1

k

)
= k+1)

=
∞

∑
k=0

(
1
4
(−1)k − 3

4
+

3
2
(k+1)

)
xk

∴ [xn]g(x) = (−1)n

4 − 3
4 +

3
2(n+1) □
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■ Example 4.24 How many ways can you tile a 2×n board completely using dominoes (i.e.,
tiles of size 1×2 and 2×1)? ■

Proof. Let an be the number of ways to tile the 2×n board with dominoes.
Then a1 = 1, a2 = 2, a3 = 3.
When the board starts with a vertical domino on the bottom left, a 2×n−1 board remains.

When the board starts with a horizontal domino on the bottom left, then there has to be a
horizontal domino on the top left square, giving a 2× n− 2 board to solve. So we get the
recurrence relation an = an−1 +an−2 for n ≥ 2 with initial conditions a0 = 1, a1 = 2.

Consider the generating function

g(x) = a0 +a1x+a2x2 + · · ·

= a0 +a1x+
∞

∑
n=2

anxn

= a0 +a1x+
∞

∑
n=2

(an−1 +an−2)xn

= a0 +a1x+
∞

∑
n=2

an−1xn +
∞

∑
n=2

an−2xn

We can write these two series in terms of g(x). In particular, ∑
∞
n=2 an−1xn = a1x2 +a2x3 +

· · ·= x(−a0 +a0 +a1x+ · · ·) = x(a0 +g(x)) and ∑
∞
n=2 an−2xn = a0x2 +a1x3 + · · ·= x2g(x).

Then g(x) = 1+ x+ x(g(x)−1)+ x2g(x), which gives a closed form for g(x). Then we use
partial fractions.

□

4.5 Ordinary Generating Functions

Theorem 4.5.1 Let n,k ∈ Z+ and T1,T2, . . . ,Tk be sets of non-negative integers.
If an is the number of integer solutions satisfying x1 + x2 + · · ·+ xk = n such that x1 ∈

Tn, . . . ,xk ∈ Tk, then an is equal to the coefficient of xn in the expansion of the generating function

g(x) =

(
∑

t1∈T1

xt1

)
· · ·

(
∑

tk∈Tk

xtk

)
= a0 +a1x+a2x2 + · · ·+anxn + · · · .

This is also equal to the number of ways to partition n identical objects into k labelled groups
such that the number of objects in the ith group is an element of Ti.

When Ti = {0,1,2, . . .} for 1 ≤ i ≤ k, we get our usual stars and bars result since the coefficient
of xn in the expansion of g(x) is equal to

(n+k−1
n

)
by Generalized Binomial Theorem:

g(x) = (1+ x+ x2 + · · ·)k =
1

(1− x)k =
∞

∑
i=0

(
i+ k−1

i

)
xi.

4.6 Exponential Generating Functions

Definition 4.6.1 — Exponential generating function. Let an be a sequence. The ordinary
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generating function of the sequence is

g(x) = a0 +a1x+a2x2 + · · ·=
∞

∑
k=0

akxk

while its exponential generating function is

G(x) = a0 +a1x+a2
x2

2!
+a3

x3

3!
+ · · ·=

∞

∑
k=0

ak
xk

k!
.

■ Example 4.25 The sequence 1,1,1, . . . ,1, . . . has
• g(x) = ∑

∞
k=0 xK = 1

1−x

• G(x) = ∑
∞
k=0

xk

k! = ex.
■

■ Example 4.26 The sequence
{(n

0

)
,
(n

1

)
, . . . ,

(n
n

)
,0,0, . . .

}
has ordinary generating function

g(x) =
(

n
0

)
+

(
n
1

)
x+
(

n
2

)
x2 + · · ·+

(
n
n

)
xn = (1+ x)n.

■

■ Example 4.27 Let P(n,k) = n!
(n−k)! be the number of permutations of n objects taken k at a

time. The exponential generating function for the sequence {P(n,0),P(n,1), . . . ,P(n,n),0,0, . . .}
is

G(x) = P(n,0)+P(n,1)x+P(n,2)
x2

2!
+ · · ·+P(n,k)

xk

k!
+ · · ·+P(n,n)

xn

n!
= · · ·
= (1+ x)n

■

So (1+ x)n is the ordinary generating function for a sequence of combinations while it’s the
exponential generating function for permutations, suggesting we should use ordinary or exponential
depending on the respective problem.

Recall the definition of multinomial coefficient:

Definition 4.6.2 — Multinomial coefficient. Let n be a positive integer and n1,n2, . . . ,nk be
non-negative integers such that

n1 +n1 + · · ·+nk = n

The multinomial coefficient is defined as(
n

n1,n2, . . . ,nk

)
:=

n!
n1!n2! · · ·nk!
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Theorem 4.6.1 If there are ni ≥ 1 objects of type i for 1 ≤ i ≤ k, and there are n = n1+n2+ · · ·nk
objects in total, then the number of arrangements of these n objects is

( n
n1,n2,...,nk

)
.

■ Example 4.28 How many ways can 4 of the letters from PAPAYA be arranged? ■

Proof. There are three A’s, two P’s, one Y.
Consider the exponential generating function

G(x) =
(

x0

0!
+

x1

1!
+

x2

2!
+

x3

3!

)
·
(

x0

0!
+

x1

1!
+

x2

2!

)
·
(

x0

0!
+

x1

1!

)
.

The answer to the problem is the coefficient of x4

4! in G(x) because there is a bijection between
the number of ways to form an x4

4! term and the number of arrangements of 4 elements from
A,A,A,P,P,Y .

G(x) = · · ·+
(

x1

1!
x2

2!
x1

1!
+

x2

2!
x1

1!
x1

1!
+

x2

2!
x2

2!
x0

0!
+

x3

3!
x1

1!
x0

0!
+

x3

3!
x0

0!
x1

1!

)
+ · · ·

= · · ·+
(

4!
1!2!1!

+
4!

2!1!1!
+

4!
2!2!0!

+
4!

3!1!0!
+

4!
3!0!1!

)
x4

4!

□

Theorem 4.6.2 Let n,k ∈ Z+ and T1,T2, . . . ,Tk be sets of non-negative integers.
Suppose we have k letters with an unlimited number of each type. Let A be our alphabet

A = {A1,A2, . . . ,Ak}.
If an is the number of length n arrangements of letters from A such that the number of

Ai’s used is an integer in Ti, then an is the coefficient of xn

n! in the expansion of the exponential
generating function

G(x) =

(
∑

t1∈T1

xt1

t1!

)
· · ·

(
∑

tk∈Tk

xtk

tk!

)
= a0 +a1x+a2

x2

2!
+ · · ·+an

xn

n!
+ · · · .

This is also equal to an =∑
( n

n1,n2,...,nk

)
where the summation is over all non-negative solutions

(n1,n2, . . . ,nk) of n1 +n2 + · · ·+nk = n such that ni ∈ Ti for i = 1,2, . . . ,k.

■ Example 4.29 How many strings of length n can be formed using A’s, B’s, and C’s so that
the number of A’s is odd and the number of B’s is also odd? ■

Proof. Use sinhx · sinhx · ex. □

■ Example 4.30 Let hn be the number of ways to colour squares of a 1×n grid using red, green,
and blue so that an even number of red is used. Determine a formula for hn. ■

Proof. We could solve this with recurrence relations. We have h1 = 2 and h2 = 5. We set up a
recurrence on the first square.

If it is green, there are hn−1 colourings.
If it is blue, there are hn−1 colourings.
If it is red, we need to colour a 1×n−1 grid with an odd number of red. This is equal to

3n−1 −hn−1, the total number of RGB colourings of a 1×n−1 grid subtracted by the number
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of colourings of a 1×n−1 grid with an even number of red.
So we get that hn = 2hn−1 +(3n−1 −hn−1) = hn−1 +3n−1 with h1 = 2.
While we have other methods for solving this recurrence, we could also iterate and find a

pattern.

h1 = 2

h2 = h1 +3 = 2+3

h3 = h2 +32 = 2+3+32

h4 = h3 +33 = 2+3+32 +33

...

hn = hn−1 +3n−1 = 2+3+32 + · · ·+3n−1

So hn = 2+∑
k=0
n−1 3k = · · ·= 3n+1

2 .
We would have to prove this formula satisfies the recurrence and initial condition.
We can also find the coefficient of xn

n! for the exponential generating function.

G(x) =
(

x0

0!
+

x2

2!
+

x4

4!
+ · · ·

)
·
(

x0

0!
+

x1

1!
+

x2

2!
+ · · ·

)
·
(

x0

0!
+

x1

1!
+

x2

2!
+ · · ·

)
We have that ∑

∞
k=0

xk

k! = ex, 1
2(e

x − e−x) = ∑
∞
k=0

x2k+1

(2k+1)! = sinhx, and 1
2(e

x + e−x) =

∑
∞
k=0

x2k

(2k)! = coshx.
Then we find the coefficient.

G(x) =
(

1
2
(ex + e−x)

)
· ex · ex =

1
2
(
e3x + ex)

=
1
2

(
∞

∑
k=0

(3x)k

k!
+

∞

∑
k=0

xk

k!

)

=
1
2

∞

∑
k=0

(3k +1)
xk

k!

Therefore, hn =
[ xn

n!

]
G(x) = 1

2(3
n +1). □

■ Example 4.31 Let hn be the number of ways to colour squares of a 1×n grid using red, green,
and blue so that an even number of red is used and at least one blue. Determine a formula for hn.
■

Proof. We find the coefficient of xn

n! for the exponential generating function.

G(x) =
(

x0

0!
+

x2

2!
+

x4

4!
+ · · ·

)
·
(

x0

0!
+

x1

1!
+

x2

2!
+ · · ·

)
·
(

x1

1!
+

x2

2!
+

x3

3!
+ · · ·

)
We have that ∑

∞
k=0

xk

k! = ex, 1
2(e

x − e−x) = ∑
∞
k=0

x2k+1

(2k+1)! = sinhx, and 1
2(e

x + e−x) =

∑
∞
k=0

x2k

(2k)! = coshx.
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Then we find the coefficient.

G(x) =
(

1
2
(ex + e−x)

)
· ex · (ex −1)

=
1
2
(e3x − e2x + ex −1)

=
1
2

(
∞

∑
k=0

(3x)k

k!

)
− 1

2

(
∞

∑
k=0

(2x)k

k!

)
+

1
2

(
∞

∑
k=0

xk

k!

)
− 1

2

=−1
2
+

∞

∑
k=0

3k −2k +1
2

xk

k!

Therefore, h0 =−1
2 +

30−20+1
2 = 0 and for n ≥ 1, hn = ∑

∞
k=0

3k−2k+1
2 . □





5. Design Theory

5.1 Combinatorial Designs

Designs are a generalization of graphs. Instead of taking 2-element subsets, we could take 3-element
subsets.

■ Example 5.1 Let X = {0,1,2,3,4,5} and B= {012,023,034,045,051,124,235,341,452,513}.
We call the elements of X points (instead of vertices). B is a collection of 3-element subsets

of X . We call the elements of B blocks, and B is the block set. ■

Consider any two pairs of points. For example, 0,1 in 012,015, 0,2 in 012,023, and 3,5 in
235,513. Every pair of points is in exactly 2 points.

How do we visualize (X ,β )? We could draw a pentagon with a point insde (the centre point
labelled by 0). Then blocks correspond to triples with exactly one pentagon edge.

Definition 5.1.1 — Design. Let t,k,v,λ be integers with t < k < v and λ > 0.
A t − (v,k,λ ) design is a pair (X ,B) such that:
• X is a set of cardinality v whose elements are called points,
• B is a collection of k-subsets of X called blocks,
• and any t points are contained in exactly λ blocks.

The main problem is: For which values of parameters do designs exist?

In Example 5.1, we have a 2− (6,3,2) design.

Definition 5.1.2 — Steiner system. A t-design with λ = 1 is called a Steiner system denoted
by S(t,k,v).

That is, t points are contained in exactly 1 block.

S(2,q+1,q2 +q+1) is called the finite projective plane.

A Steiner system S(2,3,n) is a Steiner triple system.
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Definition 5.1.3 — Steiner triple system. A Steiner triple system, denoted by ST S(n), consists
of a set X of n points and a set B of 3-element subsets of X (called blocks or triples), with the
property that any two points of X lie in a unique triple. We call n the order of the Steiner triple
system.

Again, the main problem is: For which values of n does a ST S(n) exist?

■ Example 5.2 ST S(3) is the design where X = {1,2,3} and each pair 1,2, 1,3, and 2,3 are in
exactly one block. We get B = {123}.

However, ST S(n) does not exist for n = 4,5,6.
WLOG, we have a block 123. This forces a second block with 14, but then there is no other

pair we can add.
ST S(7) exists with X = {1,2,3,4,5,6,7} and B = {123,145,167,246,257,347,356}.
This is called the Fano plane, as shown in Figure 5.1. It is a projective plane of order q = 2.

In a finite projective plane: for every pair of distinct points, there is exactly one line with both
points; there is a set of four points such that no three belong to the same line; and the intersection
of any two distinct lines contains exactly one point.

■

Figure 5.1: The Fano Plane

This was the original problem solved by Kirkman in 1847, which happened to be a Steiner
system.

■ Example 5.3 — Kirkman’s Schoolgirls Problem. Fifteen schoolgirls walk each day in five
groups of three. Arrange the girls’ walks for a week so that, in that time, each pair of girls walks
together in a group just once. ■

ST S(9) gives a solution to the nine schoolgirls problem.

■ Example 5.4 — Kirkman’s Nine Schoolgirls Problem. Nine schoolgirls walk for four days
in three groups of three. Arrange the girls’ walks for a week so that, in that time, each pair of
girls walks together in a group just once.

The walking scheme is as follows:
Day 1: 123, 456, 789
Day 2: 147, 258, 369
Day 3: 159, 267, 348
Day 4: 357, 168, 249 ■

We can turn Steiner systems into an equivalent graph theory problem.
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Definition 5.1.4 A decomposition of a graph G is a set of subgraphs that partition the edges of
G.

Proposition 5.1.1 An ST S(n) is equivalent to a decomposition of Kn into triangles.

Theorem 5.1.2 Let n > 0. There exists an ST S(n) iff n ≡ 1 or 3 mod 6.

Proof of (⇒). Suppose there exists an ST S(n). We can consider when a decomposition of the
edges of the complete graph Kn into triangles can exist.

Every vertex v must belong to n−1
2 triangles since deg(v) = n−1.

Since the number of triangles is an integer, n must be odd, so n ≡ 1,3,5 mod 6.
To rule out n ≡ 5 mod 6, for contradiction, assume n = 6k+5.
Since there are

(n
2

)
/3 = n(n−1)/6 triangles in total, n(n−1)/6 must be a positive integer.

Then

n(n−1)/6 = (6k+5)(3k+2)/3

is a positive integer. But neither 6k+5 or 3k+2 are divisible by 3. Contradiction.
∴ n ≡ 1,3 mod 6. □
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